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Foreword 

This document was prepared by the Classic McEliece team as a draft of a potential ISO McEliece standard. 
[Note to SC27 WG2: If this document is adopted by ISO, this foreword will be replaced with the usual 
ISO/SC27 boilerplate. There is no need for a McEliece-specific foreword if this document is integrated as an 
update to ISO’s existing KEM standard.] 

Introduction 
The first code-based public-key encryption system (PKE) was introduced in 1978 [McEliece]. The public key 
specifies a random binary Goppa code. A ciphertext is a codeword plus random errors. The private key allows 
efficient decoding: extracting the codeword from the ciphertext, identifying and removing the errors. 

The McEliece system was designed to be one-way (OW-CPA), meaning that an attacker cannot efficiently find 
the codeword from a ciphertext and public key, when the codeword is chosen randomly. The security level of 
the McEliece system has remained remarkably stable, despite dozens of attack papers over 45 years. The 
original McEliece parameters were designed for only 264 security, but the system easily scales up to “overkill” 
parameters that provide ample security margin against advances in computer technology, including quantum 
computers. 

The McEliece system has prompted a tremendous amount of followup work. Some of this work improves 
efficiency while clearly preserving security: this includes a “dual” PKE proposed by Niederreiter, software 
speedups, and hardware speedups. 

Furthermore, it is now well known how to efficiently convert an OW-CPA PKE into a KEM that is IND-CCA2 
secure against all ROM attacks. This conversion is tight, preserving the security level, under two assumptions 
that are satisfied by the McEliece PKE: first, the PKE is deterministic (i.e., decryption recovers all randomness 
that was used); second, the PKE has no decryption failures for valid ciphertexts. Even better, recent work 
achieves similar tightness for a broader class of attacks, namely QROM attacks. The risk that a hash-function-
specific attack could be faster than a ROM or QROM attack is addressed by the standard practice of selecting a 
well-studied, high-security, “unstructured” hash function. 

Classic McEliece brings all of this together. It is a KEM designed for IND-CCA2 security at a very high security 
level, even against quantum computers. The KEM is built conservatively from a PKE designed for OW-CPA 
security, namely Niederreiter’s dual version of McEliece’s PKE using binary Goppa codes. Every level of the 
construction is designed so that future cryptographic auditors can be confident in the long-term security of 
post-quantum public-key encryption. 



 

 

1 Scope 

This document specifies Classic McEliece, a particular family of encryption algorithms. 

2 Normative references 

The following documents are referred to in the text in such a way that some or all of their content constitutes 
requirements of this document. For dated references, only the edition cited applies. For undated references, 
the latest edition of the referenced document (including any amendments) applies. 

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST), FIPS PUB 202: SHA-3 Standard: 
Permutation-Based Hash and Extendable-Output Functions [online]. August 2015 [viewed 2023-03-31]. 
Available at https://csrc.nist.gov/publications/detail/fips/202/final [Note to SC27 WG2: This reference 
defines SHAKE256, the sole symmetric primitive used in Classic McEliece with the selected parameters. 
SHAKE is not mentioned in the WG2 roadmap; non-ISO normative references are permitted under certain 
circumstances.] 

3 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

3.1 
IND-CCA2 
indistinguishability against adaptive chosen-ciphertext attacks 

3.2 
KEM 
key-encapsulation mechanism 

3.3 
OW-CPA 
one-wayness against chosen-plaintext attacks 

3.4 
PKE 
public-key encryption system 

3.5 
ROM 
random-oracle model 

3.6 
QROM 
quantum random-oracle model 

4 Symbols and abbreviated terms 

4.1 Guide to notation 

The list below introduces the notation used in this specification. It is meant as a reference guide only; for 
complete definitions of the terms listed, refer to the appropriate text. Some other symbols are also used 
occasionally; they are introduced in the text where appropriate. 

• 𝑛: The code length (part of the CM parameters) 

• 𝑘: The code dimension (part of the CM parameters) 

• 𝑡: The guaranteed error-correction capability (part of the CM parameters) 

• 𝑞: The size of the field used (part of the CM parameters) 

• 𝑚: log2𝑞 (part of the CM parameters) 

• 𝜇: A nonnegative integer (part of the CM parameters) 

https://csrc.nist.gov/publications/detail/fips/202/final
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• 𝜈: A nonnegative integer (part of the CM parameters) 

• Hash: A cryptographic hash function (symmetric-cryptography parameter) 

• ℓ: Length of an output of Hash (symmetric-cryptography parameter) 

• 𝜎1: A nonnegative integer (symmetric-cryptography parameter) 

• 𝜎2: A nonnegative integer (symmetric-cryptography parameter) 

• PRG: A pseudorandom bit generator (symmetric-cryptography parameter) 

• 𝑔: A polynomial in 𝔽𝑞[𝑥] (part of the private key) 

• 𝛼𝑖 : An element of the finite field 𝔽𝑞 (part of the private key) 

• 𝛤: (𝑔, 𝛼0, … , 𝛼𝑛−1) (part of the private key) 

• 𝑠: A bit string of length 𝑛 (part of the private key) 

• 𝑇: An 𝑚𝑡 × 𝑘 matrix over 𝔽2 (the CM public key) 

• 𝑒: A bit string of length 𝑛 and Hamming weight 𝑡 

• 𝐶: A ciphertext encapsulating a session key 

4.2 Column vectors vs. row vectors 

Elements of 𝔽2
𝑛, such as codewords and error vectors, are always viewed as column vectors. This convention 

avoids all transpositions. Beware that this differs from a common convention in coding theory, namely to 
write codewords as row vectors but to transpose the codewords for applying parity checks. 

4.3 0-numbering vs. 1-numbering 

To simplify comparisons to software in most programming languages, this specification consistently uses 
indices numbered from 0, including row indices, column indices, and 𝛼 indices. Beware that conventions in 
the mathematical literature sometimes agree with this but sometimes do not: for example, polynomial 
exponents are conventionally numbered from 0, while most vectors not related to polynomial exponents are 
conventionally numbered from 1. 

5 Requirements 

This document defines the Classic McEliece KEM. The KEM consists of three mathematical functions, namely 
KeyGen, Encap, and Decap, for each of the “selected parameter sets” listed in Clause 10. 

The definitions for each selected parameter set are unified into a single definition for a broader parameter 
space specified in Clause 6. For each parameter set in that parameter space, subsequent clauses in this 
document define 

• exactly which public key and private key are output by KeyGen given random bits; 

• exactly which ciphertext and session key are output by Encap given a public key and random bits; and 

• exactly which session key is output by Decap given a ciphertext and a private key. 

This document defines each mathematical function 𝐹 by presenting an algorithm to compute 𝐹. Basic 
algorithms such as Gaussian elimination are not repeated here, but MatGen, Encode, Decode, Irreducible, 
FieldOrdering, SeededKeyGen, FixedWeight, KeyGen, Encap, and Decap are specified below as numbered lists 
of steps. 

Three of these algorithms, namely FixedWeight, KeyGen, and Encap, are randomized, generating random bits 
at specified moments. The set of strings of random bits allowed as input for the corresponding mathematical 
functions is defined as the set of strings of random bits consumed by these algorithms. For example, the 
KeyGen algorithm reads exactly ℓ random bits, so the domain of the mathematical function KeyGen is the set 
of ℓ-bit strings. Here ℓ, one of the Classic McEliece parameters, is 256 for each of the selected parameter sets. 

To claim conformance to this document, an algorithm shall (1) name either KeyGen or Encap or Decap; (2) 
identify a parameter set listed in Clause 10 (not another parameter set from Clause 6); and (3) compute 



 

 

exactly the corresponding mathematical function defined in this document for that parameter set. For 
example, a KeyGen implementation claimed to conform to this document for the mceliece6960119 
parameter set shall compute the specified KeyGen function for that parameter set: i.e., the implementation 
shall read exactly ℓ = 256 bits of randomness, and shall produce the same output that the KeyGen algorithm 
specified below produces given the same 256-bit string. 

Conformance to this document for a tuple of three algorithms, one for each of KeyGen and Encap and Decap, is 
defined as conformance to this document for each algorithm, and again shall identify a parameter set listed in 
Clause 10. 

Users sometimes place further constraints on algorithms, for example to include various side-channel 
countermeasures (which could use their own random bits) or to achieve particular levels of performance. 
Such constraints are out of scope for this document. This document defines the mathematical functions that 
shall be computed by any conformant algorithms; this document does not constrain how these functions are 
computed. 

6 Parameters 

The CM parameters are implicit inputs to the CM algorithms defined below. A CM parameter set specifies the 
following: 

• A positive integer 𝑚. This also defines a parameter 𝑞 = 2𝑚. 

• A positive integer 𝑛 with 𝑛 ≤ 𝑞. 

• A positive integer 𝑡 ≥ 2 with 𝑚𝑡 < 𝑛. This also defines a parameter 𝑘 = 𝑛 − 𝑚𝑡. 

• A monic irreducible polynomial 𝑓(𝑧) ∈ 𝔽2[𝑧] of degree 𝑚. This defines a representation 𝔽2 [𝑧] 𝑓⁄ (𝑧) of 
the field 𝔽𝑞 . 

• A monic irreducible polynomial 𝐹(𝑦) ∈ 𝔽𝑞[𝑦] of degree 𝑡. This defines a representation 𝔽𝑞 [𝑦] 𝐹⁄ (𝑦) of 

the field 𝔽𝑞𝑡 = 𝔽2𝑚𝑡. 

• Integers 𝜈 ≥ 𝜇 ≥ 0 with 𝜈 ≤ 𝑘 + 𝜇. Parameter sets that do not mention these parameters define them as 
(0,0) by default. 

• The symmetric-cryptography parameters listed below. 

The symmetric-cryptography parameters are the following: 

• A positive integer ℓ. 

• A cryptographic hash function Hash that outputs ℓ bits. 

• An integer 𝜎1 ≥ 𝑚. 

• An integer 𝜎2 ≥ 2𝑚. 

• A pseudorandom bit generator PRG mapping a string of ℓ bits to a string of 𝑛 + 𝜎2𝑞 + 𝜎1𝑡 + ℓ bits. 

7 The one-way function 

7.1 Matrix reduction 

7.1.1 Reduced row-echelon form 

Given a matrix 𝑋, Gaussian elimination computes the unique matrix 𝑅 in reduced row-echelon form having the 
same number of rows as 𝑋 and the same row space as 𝑋. Being in reduced row-echelon form means that there 
is a sequence 𝑐0 < 𝑐1 < ⋯ < 𝑐𝑟−1 such that 

• row 0 of 𝑅 begins with a 1 in column 𝑐0, and this is the only nonzero entry in column 𝑐0; 

• row 1 of 𝑅 begins with a 1 in column 𝑐1, the only nonzero entry in column 𝑐1; 

• row 2 of 𝑅 begins with a 1 in column 𝑐2, the only nonzero entry in column 𝑐2; 

• etc.; 



ISO #####-#:####(X) 

6 © ISO #### – All rights reserved 

• row 𝑟 − 1 of 𝑅 begins with a 1 in column 𝑐𝑟−1, the only nonzero entry in column 𝑐𝑟−1; and 

• all subsequent rows of 𝑅 are 0. 

Note that the rank of 𝑅 is 𝑟. 

7.1.2 Systematic form 

As a special case, 𝑅 is in systematic form if 

• 𝑅 has exactly 𝑟 rows, i.e., there are no zero rows; and 

• 𝑐𝑖 = 𝑖 for 0 ≤ 𝑖 < 𝑟. (This second condition is equivalent to simply saying 𝑐𝑟−1 = 𝑟 − 1, except in the 
degenerate case 𝑟 = 0.) 

In other words, 𝑅 has the form (𝐼𝑟|𝑇), where 𝐼 is an 𝑟 × 𝑟 identity matrix. Reducing a matrix 𝑋 to systematic 
form means computing the unique systematic-form matrix having the same row space as 𝑋, if such a matrix 
exists. 

7.1.3 Semi-systematic form 

The following generalization of the concept of systematic form uses two integer parameters 𝜇, 𝜈 satisfying 𝜈 ≥
𝜇 ≥ 0. 

Let 𝑅 be a rank-𝑟 matrix in reduced row-echelon form. Assume that 𝑟 ≥ 𝜇, and that there are at least 𝑟 − 𝜇 + 𝜈 
columns. 

We say that 𝑅 is in (𝜇, 𝜈)-semi-systematic form if 𝑅 has 𝑟 rows (i.e., no zero rows); 𝑐𝑖 = 𝑖 for 0 ≤ 𝑖 < 𝑟 − 𝜇; and 
𝑐𝑖 ≤ 𝑖 − 𝜇 + 𝜈 for 0 ≤ 𝑖 < 𝑟. (The 𝑐𝑖 conditions are equivalent to simply 𝑐𝑟−𝜇−1 = 𝑟 − 𝜇 − 1 and 𝑐𝑟−1 ≤ 𝑟 −

𝜇 + 𝜈 − 1 except in the degenerate case 𝑟 = 𝜇.) 

As a special case, (𝜇, 𝜈)-semi-systematic form is equivalent to systematic form if 𝜇 = 𝜈. However, if 𝜈 > 𝜇 then 
(𝜇, 𝜈)-semi-systematic form allows more matrices than systematic form. 

This specification gives various definitions first for the simpler case (𝜇, 𝜈) = (0,0) and then for the general 
case. The list of selected parameter sets provides, for each key size, one parameter set with (𝜇, 𝜈) = (0,0), and 
one parameter set labeled “f” with (𝜇, 𝜈) = (32,64). 

7.2 Matrix generation for Goppa codes 

7.2.1 General 

The following algorithm MatGen takes as input 𝛤 = (𝑔, 𝛼0, 𝛼1, … , 𝛼𝑛−1) where 

• 𝑔 is a monic irreducible polynomial in 𝔽𝑞[𝑥] of degree 𝑡 and 

• 𝛼0, 𝛼1, … , 𝛼𝑛−1 are distinct elements of 𝔽𝑞 . 

The algorithm output MatGen(𝛤) is defined first in the simpler case of systematic form, and then in the 
general case of semi-systematic form. The output is either ⊥ or of the form (𝑇, … ), where 𝑇 is the CM public 
key, an 𝑚𝑡 × 𝑘 matrix over 𝔽2. 

7.2.2 Systematic form 

For (𝜇, 𝜈) = (0,0), the algorithm output MatGen(𝛤) is either ⊥ or of the form (𝑇, 𝛤), where 𝑇 is an 𝑚𝑡 × 𝑘 
matrix over 𝔽2. Here is the algorithm: 

1. Compute the 𝑡 × 𝑛 matrix 𝑀 = {ℎ𝑖,𝑗} over 𝔽𝑞 , where ℎ𝑖,𝑗 = 𝛼𝑗
𝑖 𝑔⁄ (𝛼𝑗) for 𝑖 = 0,… , 𝑡 − 1 and 𝑗 = 0, … , 𝑛 −

1. 

2. Form an 𝑚𝑡 × 𝑛 matrix 𝑁 over 𝔽2 by replacing each entry 𝑢0 + 𝑢1𝑧 +⋯+ 𝑢𝑚−1𝑧
𝑚−1 of 𝑀 with a column 

of 𝑚 bits 𝑢0, 𝑢1, … , 𝑢𝑚−1. 

3. Reduce 𝑁 to systematic form (𝐼𝑚𝑡|𝑇), where 𝐼𝑚𝑡  is an 𝑚𝑡 ×𝑚𝑡 identity matrix. If this fails, return ⊥. 

4. Return (𝑇, 𝛤). 



 

 

7.2.3 Semi-systematic form 

For general 𝜇, 𝜈, the algorithm output MatGen(𝛤) is either ⊥ or of the form (𝑇, 𝑐𝑚𝑡−𝜇 , … , 𝑐𝑚𝑡−1, 𝛤′), where 

• 𝑇 is an 𝑚𝑡 × 𝑘 matrix over 𝔽2; 

• 𝑐𝑚𝑡−𝜇 , … , 𝑐𝑚𝑡−1 are integers with 𝑚𝑡 − 𝜇 ≤ 𝑐𝑚𝑡−𝜇 < 𝑐𝑚𝑡−𝜇+1 < ⋯ < 𝑐𝑚𝑡−1 < 𝑚𝑡 − 𝜇 + 𝜈; 

• 𝛤′ = (𝑔, 𝛼′0, 𝛼′1, … , 𝛼′𝑛−1); 

• 𝑔 is the same as in the input; and 

• 𝛼′0, 𝛼′1, … , 𝛼′𝑛−1 are distinct elements of 𝔽𝑞 . 

Here is the algorithm: 

1. Compute the 𝑡 × 𝑛 matrix 𝑀 = {ℎ𝑖,𝑗} over 𝔽𝑞 , where ℎ𝑖,𝑗 = 𝛼𝑗
𝑖 𝑔⁄ (𝛼𝑗) for 𝑖 = 0,… , 𝑡 − 1 and 𝑗 = 0, … , 𝑛 −

1. 

2. Form an 𝑚𝑡 × 𝑛 matrix 𝑁 over 𝔽2 by replacing each entry 𝑢0 + 𝑢1𝑧 +⋯+ 𝑢𝑚−1𝑧
𝑚−1 of 𝑀 with a column 

of 𝑚 bits 𝑢0, 𝑢1, … , 𝑢𝑚−1. 

3. Reduce 𝑁 to (𝜇, 𝜈)-semi-systematic form, obtaining a matrix 𝐻. If this fails, return ⊥. (Now row 𝑖 has its 
leading 1 in column 𝑐𝑖 . By definition of semi-systematic form, 𝑐𝑖 = 𝑖 for 0 ≤ 𝑖 < 𝑚𝑡 − 𝜇; and 𝑚𝑡 − 𝜇 ≤
𝑐𝑚𝑡−𝜇 < 𝑐𝑚𝑡−𝜇+1 < ⋯ < 𝑐𝑚𝑡−1 < 𝑚𝑡 − 𝜇 + 𝜈. The matrix 𝐻 is a variable that can change later.) 

4. Set (𝛼′0, 𝛼′1, … , 𝛼′𝑛−1) ← (𝛼0, 𝛼1, … , 𝛼𝑛−1). (Each 𝛼′𝑖 is a variable that can change later.) 

5. For 𝑖 = 𝑚𝑡 − 𝜇, then 𝑖 = 𝑚𝑡 − 𝜇 + 1, and so on through 𝑖 = 𝑚𝑡 − 1, in this order: swap column 𝑖 with 
column 𝑐𝑖 in 𝐻, while swapping 𝛼′𝑖  with 𝛼′𝑐𝑖 . (After the swap, row 𝑖 has its leading 1 in column 𝑖. The 

swap does nothing if 𝑐𝑖 = 𝑖.) 

6. The matrix 𝐻 now has systematic form (𝐼𝑚𝑡|𝑇), where 𝐼𝑚𝑡  is an 𝑚𝑡 ×𝑚𝑡 identity matrix. Return 

(𝑇, 𝑐𝑚𝑡−𝜇 ,… , 𝑐𝑚𝑡−1, 𝛤′) where 𝛤′ = (𝑔, 𝛼′0, 𝛼′1, … , 𝛼′𝑛−1). 

In the special case (𝜇, 𝜈) = (0,0), the 𝑐𝑚𝑡−𝜇 , … , 𝑐𝑚𝑡−1 portion of the output is empty, and the 𝑖 loop is empty, 

so 𝛤′ is guaranteed to be the same as 𝛤. The reduction to (0,0)-semi-systematic form is exactly reduction to 
systematic form. The general algorithm definition thus matches the (0,0) algorithm definition. 

7.3 Encoding subroutine 

The following algorithm Encode takes two inputs: a weight-𝑡 column vector 𝑒 ∈ 𝔽2
𝑛; and a public key 𝑇, i.e., 

an 𝑚𝑡 × 𝑘 matrix over 𝔽2. The algorithm output Encode(𝑒, 𝑇) is a vector 𝐶 ∈ 𝔽2
𝑚𝑡. Here is the algorithm: 

1. Define 𝐻 = (𝐼𝑚𝑡|𝑇). 

2. Compute and return 𝐶 = 𝐻𝑒 ∈ 𝔽2
𝑚𝑡. 

7.4 Decoding subroutine 

The following algorithm Decode decodes 𝐶 ∈ 𝔽2
𝑚𝑡 to a word 𝑒 of Hamming weight wt(𝑒) = 𝑡 with 𝐶 = 𝐻𝑒 if 

such a word exists; otherwise it returns failure. 

Formally, Decode takes two inputs: a vector 𝐶 ∈ 𝔽2
𝑚𝑡; and 𝛤′, the last component of MatGen(𝛤) for some 𝛤 

such that MatGen(𝛤) ≠⊥. Write 𝑇 for the first component of MatGen(𝛤). By definition of MatGen, 

• 𝑇 is an 𝑚𝑡 × 𝑘 matrix over 𝔽2; 

• 𝛤′ has the form (𝑔, 𝛼′0, 𝛼′1, … , 𝛼′𝑛−1); 

• 𝑔 is a monic irreducible polynomial in 𝔽𝑞[𝑥] of degree 𝑡; and 

• 𝛼′0, 𝛼′1, … , 𝛼′𝑛−1 are distinct elements of 𝔽𝑞 . 

There are two possibilities for Decode(𝐶, 𝛤′): 

• If 𝐶 = Encode(𝑒, 𝑇) then Decode(𝐶, 𝛤′) = 𝑒. In other words, if there exists a weight-𝑡 vector 𝑒 ∈ 𝔽2
𝑛 such 

that 𝐶 = 𝐻𝑒 with 𝐻 = (𝐼𝑚𝑡|𝑇), then Decode(𝐶, 𝛤′) = 𝑒. 
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• If 𝐶 does not have the form 𝐻𝑒 for any weight-𝑡 vector 𝑒 ∈ 𝔽2
𝑛, then Decode(𝐶, 𝛤′) =⊥. 

Here is the algorithm: 

1. Extend 𝐶 to 𝑣 = (𝐶, 0,… ,0) ∈ 𝔽2
𝑛 by appending 𝑘 zeros. 

2. Find the unique 𝑐 ∈ 𝔽2
𝑛 such that (1) 𝐻𝑐 = 0 and (2) 𝑐 has Hamming distance ≤ 𝑡 from 𝑣. If there is no 

such 𝑐, return ⊥. 

3. Set 𝑒 = 𝑣 + 𝑐. 

4. If wt(𝑒) = 𝑡 and 𝐶 = 𝐻𝑒, return 𝑒. Otherwise return ⊥. 

8 The Classic McEliece KEM 

8.1 Irreducible-polynomial generation 

The following algorithm Irreducible takes a string of 𝜎1𝑡 input bits 𝑑0, 𝑑1,… , 𝑑𝜎1𝑡−1. It outputs either ⊥ or a 

monic irreducible degree-𝑡 polynomial 𝑔 ∈ 𝔽𝑞[𝑥]. Here is the algorithm: 

1. Define 𝛽𝑗 = ∑ 𝑑𝜎1𝑗+𝑖
𝑚−1
𝑖=0 𝑧𝑖 for each 𝑗 ∈ {0,1, … , 𝑡 − 1}. (Within each group of 𝜎1 input bits, this uses only 

the first 𝑚 bits. The algorithm ignores the remaining bits.) 

2. Define 𝛽 = 𝛽0 + 𝛽1𝑦 +⋯+ 𝛽𝑡−1𝑦
𝑡−1 ∈ 𝔽𝑞 [𝑦] 𝐹⁄ (𝑦). 

3. Compute the minimal polynomial 𝑔 of 𝛽 over 𝔽𝑞 . (By definition 𝑔 is monic and irreducible, and 𝑔(𝛽) = 0.) 

4. Return 𝑔 if 𝑔 has degree 𝑡. Otherwise return ⊥. 

8.2 Field-ordering generation 

The following algorithm FieldOrdering takes a string of 𝜎2𝑞 input bits. It outputs either ⊥ or a sequence 

(𝛼0, 𝛼1, … , 𝛼𝑞−1) of 𝑞 distinct elements of 𝔽𝑞 . Here is the algorithm: 

1. Take the first 𝜎2 input bits 𝑏0, 𝑏1, … , 𝑏𝜎2−1 as a 𝜎2-bit integer 𝑎0 = 𝑏0 + 2𝑏1 +⋯+ 2𝜎2−1𝑏𝜎2−1, take the 

next 𝜎2 bits as a 𝜎2-bit integer 𝑎1, and so on through 𝑎𝑞−1. 

2. If 𝑎0, 𝑎1,… , 𝑎𝑞−1 are not distinct, return ⊥. 

3. Sort the pairs (𝑎𝑖 , 𝑖) in lexicographic order to obtain pairs (𝑎𝜋(𝑖), 𝜋(𝑖)) where 𝜋 is a permutation of 

{0,1,… , 𝑞 − 1}. 

4. Define 

𝛼𝑖 = ∑ 𝜋(𝑖)𝑗

𝑚−1

𝑗=0

⋅ 𝑧𝑚−1−𝑗 

5. where 𝜋(𝑖)𝑗  denotes the 𝑗th least significant bit of 𝜋(𝑖). (Recall that the finite field 𝔽𝑞 is constructed as 

𝔽2 [𝑧] 𝑓⁄ (𝑧).) 

6. Output (𝛼0, 𝛼1, … , 𝛼𝑞−1). 

8.3 Key generation 

The following randomized algorithm KeyGen takes no input (beyond the parameters). It outputs a public key 
and private key. Here is the algorithm, using a subroutine SeededKeyGen defined below: 

1. Generate a uniform random ℓ-bit string 𝛿. (This is called a seed.) 

2. Output SeededKeyGen(𝛿). 

The following algorithm SeededKeyGen takes an ℓ-bit input 𝛿. It outputs a public key and private key. Here is 
the algorithm: 

1. Compute 𝐸 = PRG(𝛿), a string of 𝑛 + 𝜎2𝑞 + 𝜎1𝑡 + ℓ bits. 

2. Define 𝛿′ as the last ℓ bits of 𝐸. 



 

 

3. Define 𝑠 as the first 𝑛 bits of 𝐸. 

4. Compute 𝛼0, … , 𝛼𝑞−1 from the next 𝜎2𝑞 bits of 𝐸 by the FieldOrdering algorithm. If this fails, set 𝛿 ← 𝛿′ 

and restart the algorithm. 

5. Compute 𝑔 from the next 𝜎1𝑡 bits of 𝐸 by the Irreducible algorithm. If this fails, set 𝛿 ← 𝛿′ and restart the 
algorithm. 

6. Define 𝛤 = (𝑔, 𝛼0, 𝛼1, … , 𝛼𝑛−1). (Note that 𝛼𝑛 , … , 𝛼𝑞−1 are not used in 𝛤.) 

7. Compute (𝑇, 𝑐𝑚𝑡−𝜇 ,… , 𝑐𝑚𝑡−1, 𝛤′) ← MatGen(𝛤). If this fails, set 𝛿 ← 𝛿′ and restart the algorithm. 

8. Write 𝛤′ as (𝑔, 𝛼′0, 𝛼′1, … , 𝛼′𝑛−1). 

9. Output 𝑇 as public key and (𝛿, 𝑐, 𝑔, 𝛼, 𝑠) as private key, where 𝑐 = (𝑐𝑚𝑡−𝜇 , … , 𝑐𝑚𝑡−1) and 𝛼 =

(𝛼′0, … , 𝛼′𝑛−1, 𝛼𝑛 , … , 𝛼𝑞−1). 

8.4 Fixed-weight-vector generation 

The following randomized algorithm FixedWeight takes no input. It outputs a vector 𝑒 ∈ 𝔽2
𝑛 of weight 𝑡. The 

algorithm uses a precomputed integer 𝜏 ≥ 𝑡 defined below. Here is the algorithm: 

1. Generate 𝜎1𝜏 uniform random bits 𝑏0, 𝑏1,… , 𝑏𝜎1𝜏−1. 

2. Define 𝑑𝑗 = ∑ 𝑏𝜎1𝑗+𝑖
𝑚−1
𝑖=0 2𝑖 for each 𝑗 ∈ {0,1, … , 𝜏 − 1}. (Within each group of 𝜎1 random bits, this uses 

only the first 𝑚 bits. The algorithm ignores the remaining bits.) 

3. Define 𝑎0, 𝑎1, … , 𝑎𝑡−1 as the first 𝑡 entries in 𝑑0, 𝑑1,… , 𝑑𝜏−1 in the range {0,1,… , 𝑛 − 1}. If there are fewer 
than 𝑡 such entries, restart the algorithm. 

4. If 𝑎0, 𝑎1,… , 𝑎𝑡−1 are not all distinct, restart the algorithm. 

5. Define 𝑒 = (𝑒0, 𝑒1,… , 𝑒𝑛−1) ∈ 𝔽2
𝑛 as the weight-𝑡 vector such that 𝑒𝑎𝑖 = 1 for each 𝑖. 

6. Return 𝑒. 

The integer 𝜏 is defined as 𝑡 if 𝑛 = 𝑞; as 2𝑡 if 𝑞 2⁄ ≤ 𝑛 < 𝑞; as 4𝑡 if 𝑞 4⁄ ≤ 𝑛 < 𝑞 2⁄ ; etc. All of the selected 
parameter sets have 𝑞 2⁄ ≤ 𝑛 ≤ 𝑞, so 𝜏 ∈ {𝑡, 2𝑡}. 

8.5 Encapsulation 

The following randomized algorithm Encap takes as input a public key 𝑇. It outputs a ciphertext 𝐶 and a 
session key 𝐾. Here is the algorithm for non-pc parameter sets: 

1. Use FixedWeight to generate a vector 𝑒 ∈ 𝔽2
𝑛 of weight 𝑡. 

2. Compute 𝐶 = Encode(𝑒, 𝑇). 

3. Compute 𝐾 = Hash(1, 𝑒, 𝐶); see Clause 9.2 for Hash input encodings. 

4. Output ciphertext 𝐶 and session key 𝐾. 

Here is the algorithm for pc parameter sets: 

1. Use FixedWeight to generate a vector 𝑒 ∈ 𝔽2
𝑛 of weight 𝑡. 

2. Compute 𝐶0 = Encode(𝑒, 𝑇). 

3. Compute 𝐶1 = Hash(2, 𝑒). Put 𝐶 = (𝐶0, 𝐶1). 

4. Compute 𝐾 = Hash(1, 𝑒, 𝐶). 

5. Output ciphertext 𝐶 and session key 𝐾. 

8.6 Decapsulation 

The following algorithm Decap takes as input a ciphertext 𝐶 and a private key, and outputs a session key 𝐾. 
Here is the algorithm for non-pc parameter sets: 

1. Set 𝑏 ← 1. 
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2. Extract 𝑠 ∈ 𝔽2
𝑛 and 𝛤′ = (𝑔, 𝛼′0, 𝛼′1, … , 𝛼′𝑛−1) from the private key. 

3. Compute 𝑒 ← Decode(𝐶, 𝛤′). If 𝑒 =⊥, set 𝑒 ← 𝑠 and 𝑏 ← 0. 

4. Compute 𝐾 = Hash(𝑏, 𝑒, 𝐶); see Clause 9.2 for Hash input encodings. 

5. Output session key 𝐾. 

Here is the algorithm for pc parameter sets: 

1. Split the ciphertext 𝐶 as (𝐶0, 𝐶1) with 𝐶0 ∈ 𝔽2
𝑚𝑡 and 𝐶1 ∈ 𝔽2

ℓ. 

2. Set 𝑏 ← 1. 

3. Extract 𝑠 ∈ 𝔽2
𝑛 and 𝛤′ = (𝑔, 𝛼′0, 𝛼′1, … , 𝛼′𝑛−1) from the private key. 

4. Compute 𝑒 ← Decode(𝐶0, 𝛤′). If 𝑒 =⊥, set 𝑒 ← 𝑠 and 𝑏 ← 0. 

5. Compute 𝐶′1 = Hash(2, 𝑒). 

6. If 𝐶′1 ≠ 𝐶1, set 𝑒 ← 𝑠 and 𝑏 ← 0. 

7. Compute 𝐾 = Hash(𝑏, 𝑒, 𝐶). 

8. Output session key 𝐾. 

9 Bits and bytes 

9.1 Choices of symmetric-cryptography parameters 

All of the selected parameter sets use the following symmetric-cryptography parameters: 

• The integer ℓ is 256. 

• The ℓ-bit string Hash(𝑥) is defined as the first ℓ bits of output of SHAKE256(𝑥). Byte strings here are 
viewed as bit strings in little-endian form; see Clause 9.2. The set of bytes is defined as {0,1,… ,255}. 

• The integer 𝜎1 is 16. (All of the selected parameter sets have 𝑚 ≤ 16, so 𝜎1 ≥ 𝑚.) 

• The integer 𝜎2 is 32. 

• The (𝑛 + 𝜎2𝑞 + 𝜎1𝑡 + ℓ)-bit string PRG(𝛿) is defined as the first 𝑛 + 𝜎2𝑞 + 𝜎1𝑡 + ℓ bits of output of 
SHAKE256(64, 𝛿). Here 64, 𝛿 means the 33-byte string that begins with byte 64 and continues with 𝛿. 

All Hash inputs used in Classic McEliece begin with byte 0 or 1 (or 2 for pc) (see Clause 9.2), and thus do not 
overlap the SHAKE256 inputs used in PRG. 

9.2 Representation of objects as byte strings 

9.2.1 Bit vectors 

If 𝑟 is a multiple of 8 then an 𝑟-bit vector 𝑣 = (𝑣0, 𝑣1,… , 𝑣𝑟−1) ∈ 𝔽2
𝑟 is represented as the following sequence 

of 𝑟 8⁄  bytes: 

(𝑣0 + 2𝑣1 + 4𝑣2 +⋯+ 128𝑣7, 𝑣8 + 2𝑣9 + 4𝑣10 +⋯+ 128𝑣15,… , 𝑣𝑟−8 + 2𝑣𝑟−7 + 4𝑣𝑟−6 +⋯+ 128𝑣𝑟−1). 

If 𝑟 is not a multiple of 8 then an 𝑟-bit vector 𝑣 = (𝑣0, 𝑣1, … , 𝑣𝑟−1) ∈ 𝔽2
𝑟 is zero-padded on the right to length 

between 𝑟 + 1 and 𝑟 + 7, whichever is a multiple of 8, and then represented as above. 

By definition, Simply Decoded Classic McEliece ignores padding bits on input, while Narrowly Decoded Classic 
McEliece rejects inputs (ciphertexts and public keys) where padding bits are nonzero; rejection means 
returning ⊥. For some parameter sets (but not all), 𝑟 is always a multiple of 8, so there are no padding bits, so 
Simply Decoded Classic McEliece and Narrowly Decoded Classic McEliece are identical. 

The definitions of Simply Decoded and Narrowly Decoded are provided for convenience in discussions of 
situations where the distinction is potentially relevant. Applications should avoid relying on the distinction. 
Conformance to this document does not require a Simply Decoded or Narrowly Decoded label. 

9.2.2 Session keys 

A session key 𝐾 is an element of 𝔽2
ℓ. It is represented as a ⌈ℓ 8⁄ ⌉-byte string. 



 

 

9.2.3 Ciphertexts for non-pc parameter sets 

For non-pc parameter sets: A ciphertext 𝐶 is an element of 𝔽2
𝑚𝑡. It is represented as a ⌈𝑚 𝑡 8⁄ ⌉-byte string. 

9.2.4 Ciphertexts for pc parameter sets 

For pc parameter sets, a ciphertext 𝐶 has two components: 𝐶0 ∈ 𝔽2
𝑚𝑡 and 𝐶1 ∈ 𝔽2

ℓ. The ciphertext is 
represented as the concatenation of the ⌈𝑚 𝑡 8⁄ ⌉-byte string representing 𝐶0 and the ⌈ℓ 8⁄ ⌉-byte string 
representing 𝐶1. 

9.2.5 Hash inputs for non-pc parameter sets 

For non-pc parameter sets, there are two types of hash inputs: (1, 𝑣, 𝐶), and (0, 𝑣, 𝐶). Here 𝑣 ∈ 𝔽2
𝑛, and 𝐶 is a 

ciphertext. 

The initial 0 or 1 is represented as a byte. The vector 𝑣 is represented as the next ⌈𝑛 8⁄ ⌉ bytes. The ciphertext 
is represented as the next ⌈𝑚 𝑡 8⁄ ⌉ bytes. All hash inputs thus begin with byte 0 or 1, as mentioned earlier. 

9.2.6 Hash inputs for pc parameter sets 

For pc parameter sets, there are three types of hash inputs: (2, 𝑣); (1, 𝑣, 𝐶); and (0, 𝑣, 𝐶). Here 𝑣 ∈ 𝔽2
𝑛, and 𝐶 

is a ciphertext. 

The initial 0, 1, or 2 is represented as a byte. The vector 𝑣 is represented as the next ⌈𝑛 8⁄ ⌉ bytes. The 
ciphertext, if present, is represented as the next ⌈𝑚 𝑡 8⁄ ⌉ + ⌈ℓ 8⁄ ⌉ bytes. 

All hash inputs thus begin with byte 0, 1, or 2, as mentioned earlier. 

9.2.7 Public keys 

The public key 𝑇, which is an 𝑚𝑡 × 𝑘 matrix, is represented in a row-major fashion. Each row of 𝑇 is 
represented as a ⌈𝑘 8⁄ ⌉-byte string, and the public key is represented as the 𝑚𝑡⌈𝑘 8⁄ ⌉-byte concatenation of 
these strings. 

9.2.8 Field elements 

Each element of 𝔽𝑞 ≅ 𝔽2 [𝑧] 𝑓⁄ (𝑧) has the form ∑ 𝑐𝑖
𝑚−1
𝑖=0 𝑧𝑖 where 𝑐𝑖 ∈ 𝔽2. The representation of the field 

element is the representation of the vector (𝑐0, 𝑐1, … , 𝑐𝑚−1) ∈ 𝔽2
𝑚. 

9.2.9 Monic irreducible polynomials 

The monic irreducible degree-𝑡 polynomial 𝑔 = 𝑔0 + 𝑔1𝑥 +⋯+ 𝑔𝑡−1𝑥
𝑡−1 + 𝑥𝑡 is represented as 𝑡⌈𝑚 8⁄ ⌉ 

bytes, namely the concatenation of the representations of the field elements 𝑔0, 𝑔1, … , 𝑔𝑡−1. 

9.2.10 Field orderings 

The obvious representation of a sequence (𝛼0, … , 𝛼𝑞−1) of 𝑞 distinct elements of 𝔽𝑞 would be as a sequence of 

𝑞 field elements. This document instead specifies the following representation. 

An “in-place Beneš network” is a series of 2𝑚 − 1 stages of swaps applied to an array of 𝑞 = 2𝑚  objects 

(𝑎0, 𝑎1,… , 𝑎𝑞−1). The first stage conditionally swaps 𝑎0 and 𝑎1, conditionally swaps 𝑎2 and 𝑎3, conditionally 

swaps 𝑎4 and 𝑎5, etc., as specified by a sequence of 𝑞 2⁄  control bits (1 meaning swap, 0 meaning leave in 
place). The second stage conditionally swaps 𝑎0 and 𝑎2, conditionally swaps 𝑎1 and 𝑎3, conditionally swaps 𝑎4 
and 𝑎6, etc., as specified by the next 𝑞 2⁄  control bits. This continues through the 𝑚th stage, which 
conditionally swaps 𝑎0 and 𝑎𝑞 2⁄ , conditionally swaps 𝑎1 and 𝑎𝑞 2⁄ +1, etc. The (𝑚 + 1)st stage is just like the 
(𝑚 − 1)st stage (with new control bits), the (𝑚 + 2)nd stage is just like the (𝑚 − 2)nd stage, and so on 
through the (2𝑚 − 1)st stage. 

Define 𝜋 as the permutation of {0,1, … , 𝑞 − 1} such that 𝛼𝑖 = ∑ 𝜋(𝑖)𝑗
𝑚−1
𝑗=0 ⋅ 𝑧𝑚−1−𝑗  for all 𝑖 ∈ {0,1, … , 𝑞 − 1}. 

The ordering (𝛼0, … , 𝛼𝑞−1) is represented as a sequence of (2𝑚 − 1)2𝑚−1 control bits for an in-place Beneš 

network for 𝜋. This vector is represented as ⌈(2𝑚 − 1)2𝑚−4⌉ bytes as above. 

Mathemtically, each permutation has multiple choices of control-bit vectors. For conformance to this 
document, a permutation 𝜋 shall be converted to specifically the control bits defined by controlbits in the 
following Python script. This is not a requirement for the decapsulation algorithm reading control bits to 
check uniqueness. 
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    def composeinv(c,pi): 
      return [y for x,y in sorted(zip(pi,c))] 
     
    def controlbits(pi): 
      n = len(pi) 
      m = 1 
      while 1<<m < n: m += 1 
      assert 1<<m == n 
     
      if m == 1: return [pi[0]] 
      p = [pi[x^1] for x in range(n)] 
      q = [pi[x]^1 for x in range(n)] 
     
      piinv = composeinv(range(n),pi) 
      p,q = composeinv(p,q),composeinv(q,p) 
     
      c = [min(x,p[x]) for x in range(n)] 
      p,q = composeinv(p,q),composeinv(q,p) 
      for i in range(1,m-1): 
        cp,p,q = composeinv(c,q),composeinv(p,q),composeinv(q,p) 
        c = [min(c[x],cp[x]) for x in range(n)] 
     
      f = [c[2*j]%2 for j in range(n//2)] 
      F = [x^f[x//2] for x in range(n)] 
      Fpi = composeinv(F,piinv) 
      l = [Fpi[2*k]%2 for k in range(n//2)] 
      L = [y^l[y//2] for y in range(n)] 
      M = composeinv(Fpi,L) 
      subM = [[M[2*j+e]//2 for j in range(n//2)] for e in range(2)] 
      subz = map(controlbits,subM) 
      z = [s for s0s1 in zip(*subz) for s in s0s1] 
      return f+z+l 

9.2.11 Column selections 

Part of the private key generated by KeyGen is a sequence 𝑐 = (𝑐𝑚𝑡−𝜇 , … , 𝑐𝑚𝑡−1) of 𝜇 integers in increasing 

order between 𝑚𝑡 − 𝜇 and 𝑚𝑡 − 𝜇 + 𝜈 − 1. 

This sequence 𝑐 is represented as a ⌈𝜈 8⁄ ⌉-byte string, the little-endian format of the integer 

∑2𝑐𝑚𝑡−𝜇+𝑖−(𝑚𝑡−𝜇)

𝜇−1

𝑖=0

. 

However, for (𝜇, 𝜈) = (0,0), the sequence 𝑐 is instead represented as the 8-byte string which is the little-
endian format of 232 − 1, i.e., 4 bytes of value 255 followed by 4 bytes of value 0. 

9.2.12 Private keys 

A private key (𝛿, 𝑐, 𝑔, 𝛼, 𝑠) is represented as the concatenation of five parts: 

• The ⌈ℓ 8⁄ ⌉-byte string representing 𝛿 ∈ 𝔽2
ℓ. 

• The string representing the column selections 𝑐. This string has ⌈𝜈 8⁄ ⌉ bytes, or 8 bytes if (𝜇, 𝜈) = (0,0). 

• The 𝑡⌈𝑚 8⁄ ⌉-byte string representing the polynomial 𝑔. 

• The ⌈(2𝑚 − 1)2𝑚−4⌉ bytes representing the field ordering 𝛼. 

• The ⌈𝑛 8⁄ ⌉-byte string representing 𝑠 ∈ 𝔽2
𝑛. 



 

 

10 Selected parameter sets 

10.1 Parameter set mceliece6688128 

KEM with 𝑚 = 13, 𝑛 = 6688, 𝑡 = 128. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦128 +
𝑦7 + 𝑦2 + 𝑦 + 1. This is a non-pc parameter set. 

10.2 Parameter set mceliece6688128f 

KEM with 𝑚 = 13, 𝑛 = 6688, 𝑡 = 128. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦128 +
𝑦7 + 𝑦2 + 𝑦 + 1. Semi-systematic parameters (𝜇, 𝜈) = (32,64). This is a non-pc parameter set. 

10.3 Parameter set mceliece6688128pc 

KEM with 𝑚 = 13, 𝑛 = 6688, 𝑡 = 128. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦128 +
𝑦7 + 𝑦2 + 𝑦 + 1. This is a pc parameter set. 

10.4 Parameter set mceliece6688128pcf 

KEM with 𝑚 = 13, 𝑛 = 6688, 𝑡 = 128. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦128 +
𝑦7 + 𝑦2 + 𝑦 + 1. Semi-systematic parameters (𝜇, 𝜈) = (32,64). This is a pc parameter set. 

10.5 Parameter set mceliece6960119 

KEM with 𝑚 = 13, 𝑛 = 6960, 𝑡 = 119. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦119 +
𝑦8 + 1. This is a non-pc parameter set. 

10.6 Parameter set mceliece6960119f 

KEM with 𝑚 = 13, 𝑛 = 6960, 𝑡 = 119. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦119 +
𝑦8 + 1. Semi-systematic parameters (𝜇, 𝜈) = (32,64). This is a non-pc parameter set. 

10.7 Parameter set mceliece6960119pc 

KEM with 𝑚 = 13, 𝑛 = 6960, 𝑡 = 119. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦119 +
𝑦8 + 1. This is a pc parameter set. 

10.8 Parameter set mceliece6960119pcf 

KEM with 𝑚 = 13, 𝑛 = 6960, 𝑡 = 119. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦119 +
𝑦8 + 1. Semi-systematic parameters (𝜇, 𝜈) = (32,64). This is a pc parameter set. 

10.9 Parameter set mceliece8192128 

KEM with 𝑚 = 13, 𝑛 = 8192, 𝑡 = 128. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦128 +
𝑦7 + 𝑦2 + 𝑦 + 1. This is a non-pc parameter set. 

10.10 Parameter set mceliece8192128f 

KEM with 𝑚 = 13, 𝑛 = 8192, 𝑡 = 128. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦128 +
𝑦7 + 𝑦2 + 𝑦 + 1. Semi-systematic parameters (𝜇, 𝜈) = (32,64). This is a non-pc parameter set. 

10.11 Parameter set mceliece8192128pc 

KEM with 𝑚 = 13, 𝑛 = 8192, 𝑡 = 128. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦128 +
𝑦7 + 𝑦2 + 𝑦 + 1. This is a pc parameter set. 

10.12 Parameter set mceliece8192128pcf 

KEM with 𝑚 = 13, 𝑛 = 8192, 𝑡 = 128. Field polynomials 𝑓(𝑧) = 𝑧13 + 𝑧4 + 𝑧3 + 𝑧 + 1 and 𝐹(𝑦) = 𝑦128 +
𝑦7 + 𝑦2 + 𝑦 + 1. Semi-systematic parameters (𝜇, 𝜈) = (32,64). This is a pc parameter set. 



ISO #####-#:####(X) 

14 © ISO #### – All rights reserved 

ANNEX A 
(informative) 

 
Overview of Classic McEliece resources 

Classic McEliece is specified in [CM-spec] and, for the pc options, [CM-pc]. The specification in this document 
is compatible with [CM-spec] and [CM-pc]. For the design rationale, see [CM-rationale]. 

[CM-sage] presents algorithms for the Classic McEliece functions in the Sage language. Subject to being 
computer-executable, this package is designed for the algorithms to be as readable as possible, including 
detailed comments matching the algorithms to [CM-spec] (and [CM-pc]). 

[CM-impl] provides guidance to implementors. For example, it covers security against side-channel attacks, 
considerations in picking a parameter set, engineering cryptographic network applications for efficiency, 
existing implementations, and how to build new implementations. 

[CM-security] provides guidance to security reviewers. As a preliminary matter, [CM-security] covers 
correctness of the cryptosystem: for example, 𝑐 in Step 2 of Decode is unique if it exists, and 𝑐 always exists 
when 𝐶 is output by Encap. [CM-security] then reviews the stability of attacks against the original 1978 
McEliece cryptosystem introduced in [McEliece], and reviews the tight relationship between the OW-CPA 
security of that cryptosystem and the QROM IND-CCA2 security of Classic McEliece. 

Given the analysis in [CM-security], all of the parameters selected in this document meet ISO’s requirement of 
2128 post-quantum security against known attacks. This is true even if one counts merely qubit operations, 
ignoring (1) qubit overheads and (2) the costs of memory access inside attacks. (This document does not 
comment on whether parameters not listed here also meet this requirement.) For comparison, 128-bit 
ciphers such as AES-128 provide only slightly more than 264 security in this metric. 

Many further references can be found in the documents cited above and in [CM-papers]. 
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