
Classic McEliece:

conservative code-based cryptography:

guide for implementors

23 October 2022

Contents

1 Introduction 2

2 Security goals for implementations 2

2.1 Mathematical security . 3

2.2 Implementation correctness . 3

2.3 Security against timing attacks . 4

2.4 Security against other side-channel attacks and fault attacks 5

3 Classic McEliece parameter sets 6

3.1 Sizes of inputs and outputs . 6

3.2 Considerations in picking a parameter set . 6

4 Engineering cryptographic network applications for efficiency 7

5 Existing implementations of the Classic McEliece operations 9

5.1 Official implementations . 9

5.2 Microcontroller implementations . 11

5.3 FPGA implementations . 11

6 Building new implementations of the Classic McEliece operations 12

6.1 Key generation . 12

6.2 Encapsulation . 13

6.3 Decapsulation . 14

References 14

1

1 Introduction

This document is aimed at readers upgrading cryptographic applications to use Classic
McEliece.

The reader’s top goal is assumed to be long-term security, ensuring that application data is
solidly protected for the foreseeable future. Security includes implementation security, ensur-
ing that bugs and side channels do not compromise the mathematical security provided by
the Classic McEliece specification. Section 2 reviews typical security goals for cryptographic
implementations.

Sometimes public-key cryptography is a large enough component of an application that
there are also constraints on the public-key cost.1 In such applications, the obvious issue
for Classic McEliece is the large size of its public keys: 1MB for the recommended high-
security parameter sets. However, there are techniques that typical Internet applications can
use to share the cost of each public key across many ciphertexts. Systematically applying
these techniques can turn Classic McEliece into the most cost-effective post-quantum system
available today, because Classic McEliece has very low costs per ciphertext.

Section 3 states the sizes of public keys, private keys, ciphertexts, and session keys for
all of the selected Classic McEliece parameter sets, and explains how to pick a Classic
McEliece parameter set. The parameters themselves are given in the separate “cryptosystem
specification” document along with descriptions of the mathematical functions. Section 4
looks at Classic McEliece from a network-engineering perspective.

In most cases, rather than writing implementations of Classic McEliece key generation,
encapsulation, and decapsulation from scratch, implementors can simply reuse the imple-
mentations that are already available for various platforms. Section 5 reviews the existing
implementations, including their performance and security features. Finally, Section 6 pro-
vides advice for situations where new implementations of these operations are needed.

2 Security goals for implementations

Classic McEliece is a key-encapsulation method (KEM). This means that it provides the
following three operations:

• Key generation. Alice—for example, an Internet server—randomly generates a private
key and a corresponding public key.

• Encapsulation. Bob—for example, a client contacting a server—uses the public key to
randomly generate a ciphertext and a session key.

1These are not the same as constraints on total cryptographic costs. For example, if an application uses
a Classic McEliece ciphertext to communicate an AES-256-GCM key used to protect N gigabytes of video
data, then the costs of symmetric cryptography increase linearly with N while the costs of Classic McEliece
are a constant independent of N .

2

• Decapsulation. Alice uses the ciphertext and the private key to generate the same
session key as Bob.

The session key can then be used as, e.g., an AES-256-GCM key to authenticate and encrypt
any number of messages being exchanged between Alice and Bob. Note that using signatures
for authentication can typically be replaced with using KEMs for authentication (often at
lower cost), as long as the signer is reachable; see, e.g., [6], [7, Section 8.1], and [35].

2.1 Mathematical security

Security analysis of the mathematical specifications of KEMs focuses primarily on ensuring
“IND-CCA2” security. Reviewing the IND-CCA2 security of Classic McEliece is the main
goal of the separate “guide for security reviewers” document.

“IND-CCA2” refers to “indistinguishability under chosen-ciphertext attacks”. This means
that the attacker seeing the public key and ciphertext cannot distinguish the resulting session
key from random garbage of the same length, even if the application exposes session keys
for some other ciphertexts to the attacker.

The definition of IND-CCA2 allows the attacker to freely ask for the session key for any
ciphertext other than the target ciphertext. This may sound unreasonable, since applications
should not provide so much power to the attacker; but achieving IND-CCA2 security seems
feasible for cryptographic designers and guarantees mathematical security in a wide range
of applications. Various cryptographic protocols have been proven to meet their security
goals under the assumption that the underlying KEMs provide IND-CCA2 security, that the
underlying stream ciphers provide PRF security, etc.

Sometimes “IND-CCA2” is written “IND-CCA”. Beware that a weaker security goal, “IND-
CCA1”, is sometimes also written “IND-CCA”. “IND-CCA2” is unambiguous.

2.2 Implementation correctness

Sometimes a bug in an implementation of a cryptographic operation means that the math-
ematical function computed by the implementation is not the same as the specified mathe-
matical function. This can compromise security.

Tests are useful in catching many bugs. Keys and ciphertexts are generated randomly, but
can still be compared across implementations if the implementations use random bytes in
the same way, since a test suite can provide the same random bytes to each implementation.
Classic McEliece specifies exactly how randomness is converted into keys and ciphertexts,
and implementation outputs for the same randomness are checked by the SUPERCOP test
suite [16] and by NIST’s Known Answer Tests (“KATs”).

It is important for tests to include not just the behavior of cryptographic operations on
correct inputs (e.g., keys produced by KeyGen and ciphertexts produced by Encap), but

3

also the behavior of cryptographic operations on other inputs that might be produced by
an attacker. KEM tests carried out by SUPERCOP automatically include some random
variations of each ciphertext.

Sometimes bugs occur only for inputs beyond the scope of existing tests. This does not
imply that attackers will have trouble triggering those inputs. Advances in tools for “formal
verification” are making it feasible to have a computer check that multiple implementations
produce the same results for all inputs. See generally [4].

Even when all implementations, including reference implementations, are formally verified
to produce identical results as each other for all inputs, there is still a risk that all of the
implementations deviate from the specified cryptographic operations. This problem would
disappear if specifications were written in computer languages understood by verification
tools. However, specifications are typically required to be written in English and/or pseu-
docode, since this is commonly believed to be better than real code as a foundation for
cryptanalysis and proofs. Deviations between specifications and reference implementations
often occur, and are typically caught by implementors manually checking specifications.

2.3 Security against timing attacks

Many implementations of various cryptographic operations have been broken by attacks
inspecting not just the public keys and ciphertexts considered in mathematical security
analyses but also the time taken by the implementations.

The time taken by a computation is often influenced by secret data inside the computation,
and is usually visible to the attacker. The attacks work backwards to compute the secret
data. Extremely small variations in timings often turn out to be exploitable: see, e.g., [2]
and, for time variations as small as a single clock cycle, [44].

Implementors can try to hide timings from attackers, but this is difficult to accomplish and
difficult to review. What has been much more successful is “constant-time programming”,
cutting off data flow from secrets to timings. See [13] for a survey and further references.

SUPERCOP includes TIMECOP, an easy-to-use tool that automatically checks for two
important sources of timing variations: branches based on secret data, and memory addresses
(array indices) based on secret data. The official Classic McEliece software implementations
have been checked by TIMECOP.

There can be further sources of problematic timing variations. For example, multipliers
on many small CPUs take data-dependent time. Current tools to check for multiplications
based on secret data are not as advanced as tools to check for branches and memory addresses
based on secret data. A recent announcement from Intel [28] appears to indicate that there
are timing variations in the vectorized multipliers on many Intel CPUs, although it is unclear
at this point which inputs will trigger these variations.

Many cryptographic systems rely heavily on integer multiplication and would suffer heavily
in performance from avoiding the CPU multipliers. Multiplications are a much smaller issue

4

for Classic McEliece, where the basic objects are binary vectors and binary polynomials
rather than integers. There are some CPUs where integer multipliers take constant time and
can be productively used to multiply binary polynomials (see [20, Section 5.1.2]), but this is
not a large speedup (see [20, Table 8]), and in any case the official Classic McEliece software
avoids this.

Timing variations based on public data are acceptable. For example, key generation in Classic
McEliece involves a variable number of key-generation attempts: each attempt succeeds with
probability about 29% for the non-f parameter sets, and close to but not exactly 100% for
the f parameter sets. The final successful key generation takes constant time, and it uses
separate random numbers from the unsuccessful key-generation attempts; in other words, the
information about secrets that is leaked through timing is information about secrets that are
not used. For this and other rejection-sampling loops, the official Classic McEliece software
uses a crypto_declassify function provided by TIMECOP to indicate that a variable can
be safely made public.

2.4 Security against other side-channel attacks and fault attacks

In addition to protection against timing attacks, protection against other side channels may
be necessary depending on the intended use case. For example, smart-card implementa-
tions are often exposed to power attacks and electromagnetic attacks, and thus need to be
protected against these attacks.

There are some situations where it is not clear which side channels might be available. If
in doubt, implementors of a cryptosystem should generally opt for implementations that
include more side-channel defenses, although sometimes this needs to be balanced against
other issues such as verification of correctness.

Often attackers can trigger faults in computations, further complicating the security analysis.
A one-time single-bit fault in a stored private key, something that will occur naturally for a
fraction of users, can eliminate IND-CCA2 security; see [11].

For a variety of side-channel attacks and fault attacks against unprotected implementations
of the McEliece cryptosystem, see [41], [37], [26], [38], [3], [33], [39], [40], [32], [19], and [25].

There is an extensive literature on general-purpose defense strategies. A general-purpose
defense against fault attacks is to encode data using an error-correcting code; data stored in
ECC RAM (or equivalently encoded in software; see [10]) is automatically encoded this way,
but more work is required to protect data inside computations. A general-purpose defense
against side-channel attacks is to randomly encode data. There has been progress towards
automated conversion of any computation into a computation with side-channel defenses;
see, e.g., [30].

5

Public key Private key Ciphertext Session key
mceliece348864 261120 6492 96 32
mceliece348864f 261120 6492 96 32
mceliece460896 524160 13608 156 32
mceliece460896f 524160 13608 156 32
mceliece6688128 1044992 13932 208 32
mceliece6688128f 1044992 13932 208 32
mceliece6960119 1047319 13948 194 32
mceliece6960119f 1047319 13948 194 32
mceliece8192128 1357824 14120 208 32
mceliece8192128f 1357824 14120 208 32

Table 1: Sizes of inputs and outputs to the complete cryptographic functions. All sizes are
expressed in bytes.

3 Classic McEliece parameter sets

3.1 Sizes of inputs and outputs

Table 1 reports sizes of public keys, private keys, ciphertexts, and session keys for each
selected parameter set. Note the large sizes of public keys, but at the same time the small
sizes of ciphertexts, much smaller than structured-lattice ciphertexts that claim the same
security levels. Classic McEliece is used in the PQ-WireGuard [27] VPN, which beyond
security is “mainly concerned about ciphertext size”.

It is possible to compress the private key down to 40 bytes (or 32 bytes for non-f param-
eter sets) with uncompression less expensive than key generation. There are intermediate
compression options that further reduce the uncompression cost. Compression can be par-
ticularly useful for situations where many private keys are being stored on a small device.

3.2 Considerations in picking a parameter set

There are two basic approaches used by implementors to select cryptographic key sizes. The
first approach is to prioritize performance: choose high-performance key sizes, and change
only if the key sizes are demonstrated to have security problems. The second approach is
to prioritize security: choose high-security key sizes, and change only if the key sizes are
demonstrated to have performance problems. The second approach is safer.

The security level of the McEliece cryptosystem against known attacks is much more sta-
ble than the security level of other proposals for post-quantum encryption. Known attacks
against the smallest selected parameter set, 348864, are more expensive than brute-force
AES-128 key search. However, AES-128 is breakable with foreseeable improvements in com-
puter technology, at least with multi-target attacks (see generally [5]), so implementors are
advised to take higher-security parameters.

6

The 6688128 and 6960119 parameter sets are recommended choices for long-term security.
The 6960119 parameter set was introduced in [17] as maximizing security for keys that fit
into 1MB. The 6688128 parameter set slightly simplifies implementations (for example,
public keys and ciphertexts have no padding bits; see “IND-CCA2 for encodings” in the
separate “design rationale” document) and has almost the same security level.

The 8192128 parameter set has even higher quantitative security against known attacks—
about 15% more bits of security; in other words, billions of times more difficult to break—but
6688128 and 6960119 are already beyond feasible attacks by such a large distance that it is
difficult to see what risk is being addressed by 8192128. Meanwhile 6688128 and 6960119

have the advantage of an extra defense explained in “OW-CPA security of length below field
size” in the separate “guide for security reviewers” document.

The f and non-f versions of each parameter set are interoperable. The f versions have faster
key generation, while the non-f versions have simpler key generation.

4 Engineering cryptographic network applications for

efficiency

KEMs designed for IND-CCA2 security, such as Classic McEliece, are designed so that a
public key can be safely reused for many ciphertexts from many users. This has important
consequences for applications that are trying to minimize the overall costs of using the KEM.

The bottom diagram in Figure 1 depicts 30 clients at 10 Internet service providers sending
ciphertexts to a server. Each ciphertext is sent to the local ISP and then from the local ISP
to the server.

The top diagram in Figure 1 depicts the preliminary step of the server distributing its public
key to those 30 clients. Since the same public key is being sent to all clients, it would be
redundant to send the public key three times to each ISP. Instead each ISP caches the
public key to distribute to any local clients that want it. This caching reduces the costs
of public-key distribution by a factor of almost 3, and the effective benefits increase as the
number of clients per ISP increases.

In other words, a public-key byte does not incur the same inherent costs as a ciphertext byte:
each ciphertext byte must be sent end-to-end, while a public-key byte can use a lower-cost
broadcast network. This is compatible with periodically refreshing public keys and erasing
old private keys for forward secrecy.

Caching mechanisms are already widely deployed on the Internet today. For example, the
Internet’s Domain Name System (DNS) can be used for arbitrary types of data (split into
packets of suitable size), and automatically caches data at ISPs. A DNS cache on a single
computer is typically configured to use 90% of the RAM on the computer (see, e.g., [23]),
which generally means many gigabytes, i.e., space for many thousands of McEliece keys.
This is not enough to cache a key for every server on the Internet, but it easily covers the

7

Figure 1: Top: Server sending a public key to 30 clients at 10 ISPs, with the public key sent only
once to each ISP. Bottom: Server receiving ciphertexts from 30 clients at 10 ISPs.

8

most popular servers.

Furthermore, while applications typically need ciphertexts to be delivered immediately, they
can typically retrieve most, if not all, of the necessary public keys in advance. A mobile
phone, for example, often needs to deliver ciphertexts through a cellular network, but can
retrieve public keys while it is on a lower-cost wireless network.

A structured-lattice KEM typically has public keys and ciphertexts around a kilobyte, so
implementors can aim to gain about a factor 2 in cost from efficient public-key distribution.
For Classic McEliece, keys are much larger but ciphertexts are much smaller, so implementors
can aim to gain much more from efficient public-key distribution—and can aim for lower total
costs than any other post-quantum KEM can achieve.

5 Existing implementations of the Classic McEliece

operations

This section reviews existing official and unofficial implementations of Classic McEliece key
generation, encapsulation, and decapsulation.

Some implementations listed below are for the round-3 version of Classic McEliece, which
includes “plaintext confirmation”. Plaintext confirmation produces a small slowdown in
computations and expands ciphertexts by 32 bytes.

Another encapsulation implementation is available as part of McTiny [15], which shows how
clients can stream ephemeral Classic McEliece keys through a stateless network server to set
up new sessions. The server immediately handles each network packet, and does not allocate
any RAM per client.

5.1 Official implementations

The official implementations are the following four software implementations for each of the
ten selected parameter sets:

• ref, portable C software. This implementation is designed for clarity, not performance.
This is the reference implementation of Classic McEliece.

• vec, portable C software. This implementation vectorizes across 64-bit integers.

• sse, C software using machine-specific intrinsics. This implementation uses the In-
tel/AMD 128-bit vector instructions.

• avx, C software using machine-specific intrinsics. This implementation uses the In-
tel/AMD 256-bit vector instructions.

These four implementations are interoperable and produce identical test vectors. All of these
implementations are designed to avoid all data flow from secrets to timing.

9

operation quartile median average quartile
mceliece348864 keypair 35039714 56705880 60333686 67615011
mceliece348864f keypair 35970884 35976620 35978769 35981416
mceliece460896 keypair 116209838 153266214 213425513 264539700
mceliece460896f keypair 117267744 117297677 117301747 117331130
mceliece6688128 keypair 265554240 443746986 479441242 532990499
mceliece6688128f keypair 274329761 274384229 274484625 274430338
mceliece6960119 keypair 241288202 316995472 432622560 468394597
mceliece6960119f keypair 240198020 240226771 240328382 240254131
mceliece8192128 keypair 308008713 486195290 548932457 664466919
mceliece8192128f keypair 306203040 306238935 306349035 306280509
mceliece348864 enc 34951 36457 37585 38980
mceliece460896 enc 69674 76086 81312 88956
mceliece6688128 enc 165296 171442 175788 185077
mceliece6960119 enc 139980 144678 147192 149592
mceliece8192128 enc 155174 156945 158068 159040
mceliece348864 dec 127036 127140 127668 127256
mceliece460896 dec 262919 263046 263634 263225
mceliece6688128 dec 305910 306212 306946 306925
mceliece6960119 dec 286353 286596 287218 287038
mceliece8192128 dec 309938 310097 310773 310475

Table 2: Time for complete cryptographic functions on an Intel Haswell CPU core. All times are
expressed in CPU cycles. Statistics are computed across SUPERCOP’s default 93 experiments.
The f variants have different keypair algorithms but identical enc algorithms and identical dec
algorithms.

For 6960119 and 6960119f, there is a distinction between Simply Decoded Classic McEliece
and Narrowly Decoded Classic McEliece. The official software implements Narrowly Decoded
Classic McEliece.

Table 2 reports speeds of the avx implementations on an Intel Haswell CPU core.
These software measurements were collected using supercop-20220506 running on a
computer named hiphop. The CPU on hiphop is an Intel Xeon E3-1220 v3 running
at 3.10GHz. This CPU does not support hyperthreading. It does support Turbo
Boost but /sys/devices/system/cpu/intel_pstate/no_turbo was set to 1, disabling
Turbo Boost. hiphop has 32GB of RAM and runs Ubuntu 18.04. Benchmarks used
./do-part, which ran on one core of the CPU. The compiler list was reduced to just
gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv -fPIC -fPIE.

For comparison, the mceliece8192128 software originally submitted for round 1 took about
2 billion cycles for each key-generation attempt (and on average about 6 billion cycles for
total key generation), slightly under 300000 cycles for encapsulation, and slightly over 450000
cycles for decapsulation.

10

5.2 Microcontroller implementations

The paper [29] reported benchmarks of various post-quantum systems on an ARM Cortex-
M4, specifically an STM32F4DISCOVERY board. That paper excluded Classic McEliece,
saying that the Classic McEliece public keys “are too large to fit into the memory of our
platform” and concluding that Classic McEliece is “arguably unsuited for a microcontroller
environment of this size”.

However, a newer paper [20] reports a full constant-time mceliece348864 implementa-
tion on an STM32F4DISCOVERY board taking 2146932033 cycles for key generation (or
1430811294 cycles with 348864f), 582199 cycles for encapsulation, and 2706681 cycles for
decapsulation. This implementation is available from https://github.com/pqcryptotw/

mceliece-arm-m4.

The board actually has enough memory to store public keys, namely flash memory. Flash
memory is efficient for large batch operations. Classic McEliece’s public-key access, even
for key generation, can be organized to involve large batch operations to flash memory and
relatively little SRAM.

For decapsulation, the same paper [20] reports 6353186 cycles for mceliece460896, 7412111
cycles for mceliece6688128, and 7481747 cycles for mceliece8192128. Decapsulation does
not need the public key. The paper also reports 1081335 cycles for encapsulation for
mceliece460896.

An earlier paper [34] implemented some of the Classic McEliece operations for the M4, with
higher cycle counts. That paper streams public keys through a separate device rather than
storing the keys in flash memory.

5.3 FPGA implementations

The computations in McEliece’s cryptosystem are particularly well suited for hardware im-
plementations. FPGA implementations for the core mathematical functions (not includ-
ing hashing etc.) were introduced in [42] for key generation and [43] for all operations.
The implementations from [43] are available from https://caslab.csl.yale.edu/code/

niederreiter/.

A complete FPGA implementation (including hashing etc.), also improving efficiency com-
pared to [43], is described in [21]. For example, for mceliece348864, one of the implemen-
tations from [21] runs at 113MHz on a Xilinx Artix 7 (xc7a200t) FPGA, uses 40018 LUT, 4
DSP, 61881 FF, and 177.5 BRAM, and takes 0.97, 0.03, and 0.10 million cycles for KeyGen,
Encap, and Decap respectively. Another implementation takes more cycles but fits in less
area. See [21] for detailed benchmarks. The implementations from [21] are planned to be
available from https://caslab.csl.yale.edu/code/pqc-classic-mceliece/.

11

https://github.com/pqcryptotw/mceliece-arm-m4
https://github.com/pqcryptotw/mceliece-arm-m4
https://caslab.csl.yale.edu/code/niederreiter/
https://caslab.csl.yale.edu/code/niederreiter/
https://caslab.csl.yale.edu/code/pqc-classic-mceliece/

6 Building new implementations of the Classic

McEliece operations

This section describes various options and resources available for implementors building new
implementations of Classic McEliece key generation, encapsulation, and/or decapsulation.
The primary resources are existing implementations. These implementations are often ac-
companied by papers describing the necessary computations (e.g., [14] and [22]), although
the papers often skip describing routine steps.

For security, implementors must make sure to implement exactly the mathematical functions
described in the separate “cryptosystem specification” document, including the handling
defined there of random bits and invalid inputs. All algorithmic options are subject to the
rule of computing the specified mathematical functions.

Implementors must also keep in mind the security goals from Section 2, such as security
against timing attacks. Some techniques for eliminating specific timing leaks are described
in this section, but this is not a substitute for applying tools that comprehensively check for
timing leaks.

The following subsections give implementation and testing guidance for the functions de-
scribed in the separate “cryptosystem specification” document. Steps mentioned below refer
to steps in algorithms stated in that document.

6.1 Key generation

Irreducible-polynomial generation. Step 3 of Irreducible computes the minimal
polynomial of β. There are various minimal-polynomial algorithms in the literature. These
algorithms become simpler in this context since the minimal polynomial is kept only when
it has degree t.

One simple option is to use linear algebra to find solutions (g0, g1, . . . , gt−1) ∈ Ft
q to the linear

equation g0β
0 + g1β

1 + · · · + gt−1β
t−1 = βt. There are always solutions. A unique solution

corresponds to a minimal polynomial of degree t, while a non-unique solution means that β
must be rejected.

In principle, implementations should be tested not just on random field elements β but also
on field elements β that are roots of irreducible polynomials of degrees strictly dividing t.

Field ordering. Step 2 of FieldOrdering returns ⊥ if a0, a1, . . . , aq−1 are not distinct.
A convenient way to test distinctness is to merge this step into Step 3, which sorts the pairs
(ai, i) in lexicographic order.

Constant-time sorting is easily carried out via “sorting networks”, which are sequences of
min-max operations at constant array positions, as long as the underlying min-max oper-
ations are carried out in constant time. Knuth’s “merge-exchange” [31, Algorithm 5.2.2M]

12

is a simple sorting network using q1+o(1) min-max operations for array size q. Tools to
automatically verify sorting-network software are available from [8].

Control-bit generation. Field orderings are encoded in private keys as control bits for
a Beneš network that computes the necessary permutation π. See [9] for Python software
and computer-verified correctness proofs for control-bit computation; the Python software
is also included in the Classic McEliece specification.

As low-cost protection against faults in the control-bit computation, implementors are ad-
vised to check after the computation that applying the Beneš network produces π, and to
restart key generation if this test fails; applying the Beneš network is very fast.

Reducing to systematic form. Reducing a matrix X to systematic form means com-
puting the unique systematic-form matrix having the same row space as X, if such a matrix
exists. One way to do this is as follows:

• Use Gaussian elimination to compute R in reduced row-echelon form.

• Return R if R is in systematic form, else ⊥.

One can streamline Gaussian elimination in this context by using early aborts. First try to
reduce the initial columns to triangular form; if the answer is ⊥ then one can skip reducing
these columns to an identity matrix, and one can skip the operations on the remaining
columns. There must always be a nonzero entry in column 0 (or else the answer is ⊥), then
after elimination there must always be a nonzero entry in column 1 (or else the answer is
⊥), etc.

Reducing to semi-systematic form. As in the special case of systematic form, one way
to compute the (µ, ν)-semi-systematic form is to compute the reduced row-echelon form R,
and then output R if R is in (µ, ν)-semi-systematic form.

A more streamlined computation requires a nonzero entry in column 0, then after elimination
requires a nonzero entry in column 1, and so on for the first r − µ columns; then computes
the reduced row-echelon form of the next ν columns of the bottom µ rows, and requires this
submatrix to have rank µ; and then completes the computation of reduced row-echelon form
of the entire matrix.

6.2 Encapsulation

Generating fixed-weight vectors. Step 5 of FixedWeight converts a0, . . . , at−1 into
the unique weight-t vector e such that eai = 1 for each i. The obvious way to implement
this conversion is to start with e = 0, then use a RAM operation to set ea0 to 1, then use
a RAM operation to set ea1 to 1, etc. However, on most platforms, this leaks information
about a0, . . . , at−1 through timing. Implementations that are not guaranteed to be using

13

platforms with constant-time RAM should instead simulate RAM operations using constant-
time arithmetic.

Matrix-vector multiplication. Bits of e that are 0 obviously do not affect the output,
but skipping them again leaks information through timing.

6.3 Decapsulation

Decoding algorithms. The Decode definition refers to H, which one can compute via
MatGen(Γ′) = (T, . . .). However, this recomputation is not necessary.

Courses on coding theory include algorithms (not using H) for Step 2 of Decode. See [12]
for a more direct introduction to the simplest algorithm. For speedups to this algorithm, see
generally [14] and [22].

This algorithm either returns ⊥ or guarantees that Hc = 0, which mathematically implies
C = He in Step 4. However, implementors are advised to separately check C = He in
Step 4 as protection against faults in Step 2. This again does not require recomputing H.
There are other parity-check matrices H ′ (related to Ĥ in key generation) for the same code
that are recovered from Γ′ much more efficiently than MatGen, and that can be applied to
vectors without using quadratic space; see generally [14]. Comparing H ′(v + e) to 0, where
v = (C, 0, . . . , 0), has the same effect as comparing C to He.

Avoiding early aborts. The logic for the correctness of Decode relies on Step 2 always
finding a codeword at distance t if one exists. It does not rely on Step 2 failing in the cases
that a codeword does not exist: Decode remains correct if, instead of returning ⊥, Step 2
chooses some vector c ∈ Fn

2 and continues on to Step 3.

The distinction between success and failure of Decode is secret in the context of the Classic
McEliece KEM. In particular, immediately stopping the computation when Step 2 returns
⊥ would reveal this distinction through timing, so it is recommended for implementors to
have Step 2 always choose some c ∈ Fn

2 .

Similarly, the distinction between failures and successes inside Decap is secret information.
It is recommended for implementors to always go through the same sequence of computations,
using arithmetic to simulate tests and conditional assignments.

Double-checks on private keys. Beyond using generic error-correcting codes to catch
occasional DRAM errors, implementors may wish to carry out more stringent checks on
private keys. Options include recomputing s as a hash of δ, checking the weight of c, checking
irreducibility of g, recomputing β and checking whether g(β) = 0 (which is faster than
recomputing g), and similarly checking the α control bits (which is faster than recomputing
them).

14

References

[1] 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,
24–27 May 2021. IEEE, 2021. https://doi.org/10.1109/SP40001.2021.

[2] Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds: A timing attack
on Amazon’s s2n implementation of TLS. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology—EUROCRYPT 2016—35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8–12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in Computer Sci-
ence, pages 622–643. Springer, 2016. https://eprint.iacr.org/2015/1129.

[3] Roberto Avanzi, Simon Hoerder, Dan Page, and Michael Tunstall. Side-channel attacks
on the McEliece and Niederreiter public-key cryptosystems. J. Cryptogr. Eng., 1(4):271–
281, 2011. https://doi.org/10.1007/s13389-011-0024-9.

[4] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers,
Kevin Liao, and Bryan Parno. SoK: Computer-aided cryptography. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24–27 May
2021 [1], pages 777–795. https://eprint.iacr.org/2019/1393.

[5] Daniel J. Bernstein. Break a dozen secret keys, get a million more for free, 2015.
https://blog.cr.yp.to/20151120-batchattacks.html.

[6] Daniel J. Bernstein. The post-quantum Internet, 2016. https://cr.yp.to/talks.

html#2016.02.24.

[7] Daniel J. Bernstein. D2.5: Internet: Integration, 2018. https://pqcrypto.eu.org/

deliverables/d2.5.pdf.

[8] Daniel J. Bernstein. djbsort, 2019. https://sorting.cr.yp.to.

[9] Daniel J. Bernstein. Verified fast formulas for control bits for permutation networks,
2020. https://cr.yp.to/papers.html#controlbits.

[10] Daniel J. Bernstein. libsecded, 2022. https://pqsrc.cr.yp.to/downloads.html.

[11] Daniel J. Bernstein. A one-time single-bit fault leaks all previous NTRU-HRSS session
keys to a chosen-ciphertext attack, 2022. https://cr.yp.to/papers.html#ntrw, to
appear at INDOCRYPT 2022.

[12] Daniel J. Bernstein. Understanding binary-Goppa decoding, 2022. https://cr.yp.to/
papers.html#goppadecoding.

[13] Daniel J. Bernstein and Billy Bob Brumley. Timing attacks, 2022. https://timing.

attacks.cr.yp.to/.

15

https://doi.org/10.1109/SP40001.2021
https://eprint.iacr.org/2015/1129
https://doi.org/10.1007/s13389-011-0024-9
https://eprint.iacr.org/2019/1393
https://blog.cr.yp.to/20151120-batchattacks.html
https://cr.yp.to/talks.html#2016.02.24
https://cr.yp.to/talks.html#2016.02.24
https://pqcrypto.eu.org/deliverables/d2.5.pdf
https://pqcrypto.eu.org/deliverables/d2.5.pdf
https://sorting.cr.yp.to
https://cr.yp.to/papers.html#controlbits
https://pqsrc.cr.yp.to/downloads.html
https://cr.yp.to/papers.html#ntrw
https://cr.yp.to/papers.html#goppadecoding
https://cr.yp.to/papers.html#goppadecoding
https://timing.attacks.cr.yp.to/
https://timing.attacks.cr.yp.to/

[14] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time code-
based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic
Hardware and Embedded Systems—CHES 2013—15th International Workshop, Santa
Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes
in Computer Science, pages 250–272. Springer, 2013. https://tungchou.github.io/

papers/mcbits.pdf.

[15] Daniel J. Bernstein and Tanja Lange. McTiny: Fast high-confidence post-quantum key
erasure for tiny network servers. In Srdjan Capkun and Franziska Roesner, editors,
29th USENIX Security Symposium, USENIX Security 2020, August 12–14, 2020, pages
1731–1748. USENIX Association, 2020. https://mctiny.org.

[16] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems, 2022. https://bench.cr.yp.to.

[17] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the
McEliece cryptosystem. In Buchmann and Ding [18], pages 31–46. https://eprint.

iacr.org/2008/318.

[18] Johannes A. Buchmann and Jintai Ding, editors. Post-Quantum Cryptography, Second
International Workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17–19, 2008,
Proceedings, volume 5299 of Lecture Notes in Computer Science. Springer, 2008. https:
//doi.org/10.1007/978-3-540-88403-3.

[19] Pierre-Louis Cayrel, Brice Colombier, Vlad-Florin Dragoi, Alexandre Menu, and Lil-
ian Bossuet. Message-recovery laser fault injection attack on the Classic McEliece
cryptosystem. In Anne Canteaut and François-Xavier Standaert, editors, Advances in
Cryptology—EUROCRYPT 2021—40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021,
Proceedings, Part II, volume 12697 of Lecture Notes in Computer Science, pages 438–
467. Springer, 2021. https://eprint.iacr.org/2020/900.

[20] Ming-Shing Chen and Tung Chou. Classic McEliece on the ARM Cortex-M4. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):125–148, 2021. https://doi.org/10.

46586/tches.v2021.i3.125-148.

[21] Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben Niederhagen, Jakub
Szefer, and Wen Wang. Complete and improved FPGA implementation of Classic
McEliece. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(3):71–113, 2022. https:

//doi.org/10.46586/tches.v2022.i3.71-113.

[22] Tung Chou. McBits revisited. In Fischer and Homma [24], pages 213–231. https:

//tungchou.github.io/papers/mcbits_revisited.pdf.

[23] Internet Systems Consortium. Configuration reference, 2022. https://bind9.

readthedocs.io/en/latest/reference.html.

16

https://tungchou.github.io/papers/mcbits.pdf
https://tungchou.github.io/papers/mcbits.pdf
https://mctiny.org
https://bench.cr.yp.to
https://eprint.iacr.org/2008/318
https://eprint.iacr.org/2008/318
https://doi.org/10.1007/978-3-540-88403-3
https://doi.org/10.1007/978-3-540-88403-3
https://eprint.iacr.org/2020/900
https://doi.org/10.46586/tches.v2021.i3.125-148
https://doi.org/10.46586/tches.v2021.i3.125-148
https://doi.org/10.46586/tches.v2022.i3.71-113
https://doi.org/10.46586/tches.v2022.i3.71-113
https://tungchou.github.io/papers/mcbits_revisited.pdf
https://tungchou.github.io/papers/mcbits_revisited.pdf
https://bind9.readthedocs.io/en/latest/reference.html
https://bind9.readthedocs.io/en/latest/reference.html

[24] Wieland Fischer and Naofumi Homma, editors. Cryptographic Hardware and Embedded
Systems—CHES 2017—19th International Conference, Taipei, Taiwan, September 25–
28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Science. Springer,
2017.

[25] Qian Guo, Andreas Johansson, and Thomas Johansson. A key-recovery side-channel
attack on Classic McEliece implementations. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(4):800–827, 2022. https://doi.org/10.46586/tches.v2022.i4.800-827.

[26] Stefan Heyse, Amir Moradi, and Christof Paar. Practical power analysis attacks on
software implementations of McEliece. In Sendrier [36], pages 108–125. https://doi.

org/10.1007/978-3-642-12929-2_9.

[27] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R. Zim-
mermann. Post-quantum WireGuard. In 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24–27 May 2021 [1], pages 304–321.
https://eprint.iacr.org/2020/379.

[28] Intel. Data operand independent timing instruction set archi-
tecture (ISA) guidance, 2022. https://web.archive.org/web/

20220821152732/https://www.intel.com/content/www/us/en/developer/

articles/technical/software-security-guidance/best-practices/

data-operand-independent-timing-isa-guidance.html.

[29] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4:
Testing and benchmarking NIST PQC on ARM Cortex-M4. 2019. https://eprint.

iacr.org/2019/844.

[30] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated genera-
tion of masked hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):589–629,
2022. https://doi.org/10.46586/tches.v2022.i1.589-629.

[31] Donald E. Knuth. The art of computer programming, volume III: sorting and searching,
1973.

[32] Norman Lahr, Ruben Niederhagen, Richard Petri, and Simona Samardjiska. Side
channel information set decoding using iterative chunking—plaintext recovery from
the ”Classic McEliece” hardware reference implementation. In Shiho Moriai and
Huaxiong Wang, editors, Advances in Cryptology—ASIACRYPT 2020—26th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7–11, 2020, Proceedings, Part I, volume
12491 of Lecture Notes in Computer Science, pages 881–910. Springer, 2020. https:

//eprint.iacr.org/2019/1459.

[33] H. Gregor Molter, Marc Stöttinger, Abdulhadi Shoufan, and Falko Strenzke. A simple
power analysis attack on a McEliece cryptoprocessor. J. Cryptogr. Eng., 1(1):29–36,
2011. https://doi.org/10.1007/s13389-011-0001-3.

17

https://doi.org/10.46586/tches.v2022.i4.800-827
https://doi.org/10.1007/978-3-642-12929-2_9
https://doi.org/10.1007/978-3-642-12929-2_9
https://eprint.iacr.org/2020/379
https://web.archive.org/web/20220821152732/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://web.archive.org/web/20220821152732/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://web.archive.org/web/20220821152732/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://web.archive.org/web/20220821152732/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844
https://doi.org/10.46586/tches.v2022.i1.589-629
https://eprint.iacr.org/2019/1459
https://eprint.iacr.org/2019/1459
https://doi.org/10.1007/s13389-011-0001-3

[34] Johannes Roth, Evangelos G. Karatsiolis, and Juliane Krämer. Classic McEliece im-
plementation with low memory footprint. In Pierre-Yvan Liardet and Nele Mentens,
editors, Smart Card Research and Advanced Applications—19th International Confer-
ence, CARDIS 2020, Virtual Event, November 18–19, 2020, Revised Selected Papers,
volume 12609 of Lecture Notes in Computer Science, pages 34–49. Springer, 2020.
https://eprint.iacr.org/2021/138.

[35] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without hand-
shake signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9–13, 2020, pages 1461–1480. ACM, 2020.
https://eprint.iacr.org/2020/534.

[36] Nicolas Sendrier, editor. Post-Quantum Cryptography, Third International Workshop,
PQCrypto 2010, Darmstadt, Germany, May 25–28, 2010. Proceedings, volume 6061
of Lecture Notes in Computer Science. Springer, 2010. https://doi.org/10.1007/

978-3-642-12929-2.

[37] Abdulhadi Shoufan, Falko Strenzke, H. Gregor Molter, and Marc Stöttinger. A timing
attack against Patterson algorithm in the McEliece PKC. In Dong Hoon Lee and Seokhie
Hong, editors, Information, Security and Cryptology—ICISC 2009, 12th International
Conference, Seoul, Korea, December 2–4, 2009, Revised Selected Papers, volume 5984
of Lecture Notes in Computer Science, pages 161–175. Springer, 2009. https://doi.

org/10.1007/978-3-642-14423-3_12.

[38] Falko Strenzke. A timing attack against the secret permutation in the McEliece PKC.
In Sendrier [36], pages 95–107. https://doi.org/10.1007/978-3-642-12929-2_8.

[39] Falko Strenzke. Message-aimed side channel and fault attacks against public key
cryptosystems with homomorphic properties. J. Cryptogr. Eng., 1(4):283–292, 2011.
https://doi.org/10.1007/s13389-011-0020-0.

[40] Falko Strenzke. Timing attacks against the syndrome inversion in code-based cryp-
tosystems. In Philippe Gaborit, editor, Post-Quantum Cryptography—5th Interna-
tional Workshop, PQCrypto 2013, Limoges, France, June 4–7, 2013. Proceedings,
volume 7932 of Lecture Notes in Computer Science, pages 217–230. Springer, 2013.
https://eprint.iacr.org/2011/683.

[41] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Abdulhadi
Shoufan. Side channels in the McEliece PKC. In Buchmann and Ding [18], pages
216–229. https://doi.org/10.1007/978-3-540-88403-3_15.

[42] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based key generator for the
Niederreiter cryptosystem using binary Goppa codes. In Fischer and Homma [24], pages
253–274. https://eprint.iacr.org/2017/595.

18

https://eprint.iacr.org/2021/138
https://eprint.iacr.org/2020/534
https://doi.org/10.1007/978-3-642-12929-2
https://doi.org/10.1007/978-3-642-12929-2
https://doi.org/10.1007/978-3-642-14423-3_12
https://doi.org/10.1007/978-3-642-14423-3_12
https://doi.org/10.1007/978-3-642-12929-2_8
https://doi.org/10.1007/s13389-011-0020-0
https://eprint.iacr.org/2011/683
https://doi.org/10.1007/978-3-540-88403-3_15
https://eprint.iacr.org/2017/595

[43] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Niederreiter cryptosys-
tem using binary Goppa codes. In Tanja Lange and Rainer Steinwandt, editors, Post-
Quantum Cryptography—9th International Conference, PQCrypto 2018, Fort Laud-
erdale, FL, USA, April 9–11, 2018, Proceedings, volume 10786 of Lecture Notes in Com-
puter Science, pages 77–98. Springer, 2018. https://eprint.iacr.org/2017/1180.

[44] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: a timing attack on
OpenSSL constant-time RSA. J. Cryptogr. Eng., 7(2):99–112, 2017. https://eprint.
iacr.org/2016/224.

19

https://eprint.iacr.org/2017/1180
https://eprint.iacr.org/2016/224
https://eprint.iacr.org/2016/224

	Introduction
	Security goals for implementations
	Mathematical security
	Implementation correctness
	Security against timing attacks
	Security against other side-channel attacks and fault attacks

	Classic McEliece parameter sets
	Sizes of inputs and outputs
	Considerations in picking a parameter set

	Engineering cryptographic network applications for efficiency
	Existing implementations of the Classic McEliece operations
	Official implementations
	Microcontroller implementations
	FPGA implementations

	Building new implementations of the Classic McEliece operations
	Key generation
	Encapsulation
	Decapsulation

	References

