
Classic McEliece vs. NTS-KEM

Classic McEliece Comparison Task Force

2018.06.29



Contents

1 Introduction 2

2 Ciphertext size: identical 3

3 Ciphertext details: Classic McEliece is better 4

4 Patent status: identical? 6

5 Chosen-ciphertext attacks: Classic McEliece is better 7

6 Systematic form: Classic McEliece is better 8

7 Permutation security: Classic McEliece is better 12

8 Compressed secret keys: Classic McEliece is better 14

9 Polynomials: Classic McEliece is better 15

10 Public keys: Classic McEliece is better 18

11 Allowing reduced n: Classic McEliece is better 19

12 Specific parameter sets: can argue either way 22

13 Miscellaneous sloppiness 23

14 Current software 24

1



Chapter 1

Introduction

The original McEliece code-based cryptosystem aimed for OW-CPA security
(hardness of inversion). It has a strong security history: dozens of papers over
40 years have tried, with only marginal success, to attack this system.

Two submissions to the NIST post-quantum submission, Classic McEliece and
NTS-KEM, are based directly on the McEliece cryptosystem. These submis-
sions do extra work, using a modern hash function (SHAKE256 for Classic
McEliece, SHA3-256 for NTS-KEM), to build key-encapsulation mechanisms
(KEMs) aiming for IND-CCA2 security.

This document analyzes various differences between Classic McEliece and NTS-
KEM.

2



Chapter 2

Ciphertext size: identical

Size comparison, with the usual notation of n for the code length and k for the
code dimension:

ciphertext bits system
n original McEliece (not IND-CCA2 secure)
n− k Niederreiter cryptosystem (not IND-CCA2 secure)
n− k + 256 Classic McEliece submission
n− k + 256 NTS-KEM submission

The two submissions thus have identical ciphertext sizes.

A dispute about n−k vs. n−k+256. Our notes of the NTS-KEM talk at
the First PQC Standardization Conference indicate that the speaker was saying

• that Dent’s IND-CCA2 conversion (used in Classic McEliece), and every
other standard tight conversion, requires extra space, while

• NTS-KEM achieves IND-CCA2 without extra space.

Together these statements imply that NTS-KEM has smaller ciphertexts than
Classic McEliece.

However, NTS-KEM actually uses an extra 256-bit hash, i.e., total ciphertext
size n−k+ 256 bits, and thus the same ciphertext size as Classic McEliece. See
Chapter 3. Furthermore, “implicit rejection” achieves IND-CCA2 security with
total ciphertext size n− k bits, i.e., without using extra space. See Chapter 5.

We have not found a recording of the NTS-KEM talk, and it is possible that
our notes do not accurately reflect what the speaker was saying.

3



Chapter 3

Ciphertext details: Classic
McEliece is better

Notation: sizes and matrices. The following ciphertext description con-
siders a code with parity-check matrix H = (In−k|Q) and generator matrix

G =

(
Q

Ik

)
. The public matrix Q is (n− k)× k.

Classic McEliece ciphertexts. Classic McEliece uses Niederreiter cipher-
texts. A Niederreiter ciphertext has the form He. The vector e has n bits and
specified weight; the vector He has n− k bits.

Classic McEliece extends ciphertexts to include “plaintext confirmation”: a 256-
bit hash of e (not the hash used as a session key). This was proposed (in much
more generality) by Dent in 2002.

NTS-KEM ciphertexts. NTS-KEM uses the following obfuscated form of
Niederreiter ciphertexts. Generate a specified-weight n-bit vector

e =

ecea
eb


where ec has n − k bits, ea has k − 256 bits, and eb has 256 bits. Compute a
256-bit hash K of e. Send (B,C) as a ciphertext, where

B = K + eb and

C = ec +Q

(
ea
K

)
.

Note that B has 256 bits, and C has n− k bits.

4



Details of the obfuscation. Here is how to see that the NTS-KEM cipher-
text is an obfuscated Niederreiter ciphertext.

Start with a Niederreiter ciphertext He. Also include Dent’s 256-bit plaintext
confirmation, a hash of e.

Give names to the following parts of the n-bit vector e: the first n − k bits
are ec; the next k − 256 bits are ea; the last 256 bits are eb. The Niederreiter
ciphertext He is then

ec +Q

(
ea
eb

)
since H = (In−k|Q).

Tweak the 256-bit plaintext-confirmation hash by adding the eb part of the input
to the output. In other words, replace Dent’s 256-bit plaintext confirmation K
with K+ eb. This tweak converts a uniform random hash function to a uniform
random hash function, so Dent’s ROM proof with the original hash function
trivially implies a ROM proof with the tweaked hash function.

To review, the ciphertext is now(
K + eb, ec +Q

(
ea
eb

))
.

Define

Obfuscate(B,C) =

(
B,C +Q

(
0

B

))
where the 0 has k−256 bits. Anyone can compute this Obfuscate function, since
Q is public; furthermore, Obfuscate is its own inverse. Apply this Obfuscate
function to the ciphertext:

Obfuscate

(
K + eb, ec +Q

(
ea
eb

))
=

(
K + eb, ec +Q

(
ea
eb

)
+Q

(
0

K + eb

))
=
(
K + eb, ec +Q

(ea
K

))
.

This obfuscated ciphertext is exactly the NTS-KEM ciphertext (B,C).

Comparison. The obfuscation embedded into NTS-KEM complicates the
system description and has no compensating advantages.

5



Chapter 4

Patent status: identical?

Originally NTS-KEM claimed patents: U.S. patent application 20150163060
and G.B. patent application 2532242. It was never clear exactly which parts of
NTS-KEM were claimed to be covered.

The NTS-KEM submitters wrote that they had “a US patent application and
a granted UK patent describing a method by which a McEliece ciphertext may
be shortened and have the same security as the full length McEliece ciphertext”
and that this was used “in no other PQC submission as far as we can tell”. A
request for clarification went unanswered. It seems that what was patented is
the obfuscation described in Chapter 3. Note again that Niederreiter’s compres-
sion already achieved this ciphertext length in 1986; as shown in the previous
section, NTS-KEM does not have shorter ciphertexts.

The NTS-KEM submitters also wrote that they had “no wish to place any
constraints whatsoever” on people wishing to use this method. A request for
clarification (“Are you saying that you’re happy for people to use NTS-KEM as
long as they pay you?”) went unanswered.

In an email to the pqc-forum, dated 27 April 2018, the NTS-KEM team wrote
“We have decided to eliminate any uncertainty by abandoning the patent with
immediate effect. Our submission will no longer be subject to any patents and
is free for anyone to experiment with.” On the other hand, as of 17 June 2018,

https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2532242

shows that the UK patent was granted with granting date of 5 June 2018, and
does not show any abandonment of the patent. Also, the “Image File Wrapper”
available from https://portal.uspto.gov/pair/PublicPair for application
14/596098 does not show any abandonment of the U.S. patent application.

The Classic McEliece team never had, and never will have, any patents on
Classic McEliece.

6

https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2532242
https://portal.uspto.gov/pair/PublicPair


Chapter 5

Chosen-ciphertext attacks:
Classic McEliece is better

Classic McEliece has two layers of defense against chosen-ciphertext attacks:
plaintext confirmation as per Dent; and implicit rejection as per Persichetti’s
thesis. NTS-KEM has only the first defense.

The NTS-KEM presentation emphasized having a tight ROM IND-CCA2 secu-
rity theorem from OW-CPA. The new Bernstein–Persichetti paper “Towards
KEM Unification” (https://eprint.iacr.org/2018/526) presents full details
of a tight ROM security theorem for Classic McEliece which achieves IND-CCA2
security from OW-CPA of the underlying cryptosystem.

A proof along the lines of Dent was already outlined in the Classic McEliece
submission, but it turns out that, thanks to the implicit-rejection technique, it
is possible to obtain a much simpler proof.

The same proof strategy should also allow QROM IND-CCA2 security to be
obtained tightly from the Bernstein–Persichetti “IND-Hash” notion, which is
very close to OW-CPA. There don’t seem to be any tight QROM proof strategies
applicable to NTS-KEM.

Any ROM or QROM proof for NTS-KEM can be converted into a ROM or
QROM proof for Classic McEliece: strip away the obfuscation explained in
Chapter 3, and replace decapsulation failures with pseudorandom results. A
conversion the other way doesn’t work, since it would have to figure out the
pattern of decapsulation failures.

7

https://eprint.iacr.org/2018/526


Chapter 6

Systematic form: Classic
McEliece is better

Classic McEliece. The original McEliece system generates, independently, a
uniform random polynomial and a uniform random permutation.

Classic McEliece, following Niederreiter, converts the public key to systematic
form. This works about 29% of the time. If this does not work, Classic McEliece
starts over with a new polynomial and permutation.

NTS-KEM. NTS-KEM claims an advantage here (page 24 of the submission,
last sentence): a key-generation attempt works 100% of the time instead of
29%. The point is that NTS-KEM reorders columns “if necessary” during the
conversion to systematic form: i.e., it applies a further permutation to ensure
that the matrix can be converted to systematic form.

A non-full-rank matrix will still fail. It seems likely that the probability of
encountering a non-full-rank matrix is below 2−256, since NTS-KEM requires k
to be larger than 256; this failure probability does not sound like a problematic
deviation from NIST’s submission requirements. On the other hand, there is
no proof, and having a key-generation algorithm not always work is an extra
complication for auditors. This is easy to fix: restart key generation in the
failure cases.

To avoid confusion, the following description says “permuted systematic form”
for the NTS-KEM output, and “unpermuted systematic form” for the Classic
McEliece output.

Comparison. Of course reducing the number of key-generation attempts by
a factor 3.5 sounds good, and maybe there are applications where this makes

8



a difference between acceptable and unacceptable costs. However, this analy-
sis presumes that an NTS-KEM key-generation attempt, reducing the matrix
to permuted systematic form, has the same cost as a Classic McEliece key-
generation attempt, reducing the matrix to unpermuted systematic form.

NTS-KEM uses a variable-time algorithm to reduce to permuted systematic
form. This is not (or at least should not be!) acceptable for auditors. Some-
times people argue that timing attacks against key generation are difficult since
key generation is done only once; but the Aldaya–Garćıa–Tapia–Brumley pa-
per “Cache-Timing Attacks on RSA Key Generation” (https://eprint.iacr.
org/2018/367) shows that this argument is flawed.

It is of course theoretically possible to write down a constant-time algorithm to
reduce to permuted systematic form. But how expensive is this, compared to a
constant-time algorithm for unpermuted systematic form? If the answer is that
it is 10×more expensive then there is more overall time spent on key generation.
Even worse, this sets a bad precedent for implementors, who will be tempted
to use variable-time algorithms (as illustrated by the NTS-KEM submission),
creating unnecessary conflicts between simplicity, security, and speed.

Algorithm analysis: unpermuted systematic form. Consider a matrix
with n − k rows and n columns; e.g., 1664 rows and 8192 columns. The first
step in converting to unpermuted systematic form is as follows:

• Search the first column for its “pivot”, which by definition is the first
nonzero entry. (If there is no pivot then the unpermuted-systematic-form
computation fails.)

• Swap the pivot row with the first row.

• XOR the first row into other rows that have nonzero entries in this column.

The McBits paper instead suggests the following constant-time strategy:

• Conditionally XOR the second row into the first row, where the condition
is that the first row has leading entry 0.

• Conditionally XOR the third row into the first row, where the condition
is that the first row (now) has leading entry 0.

• Et cetera.

• Conditionally XOR the first row into the second row, where the condition
is that the second row has leading entry 1.

• Conditionally XOR the first row into the third row, where the condition
is that the third row has leading entry 1.

9

https://eprint.iacr.org/2018/367
https://eprint.iacr.org/2018/367


• Et cetera.

The next step works through the second column in a similar way, searching for
a pivot starting from the second row. The same procedure continues for n− k
steps.

Overall the number of positions searched for pivots is about (n − k)2/2, while
there are about 3n(n − k)2/2 XORs of entries across rows. It is important to
understand that the time ratio between these two operations is far below the
ratio 3n of bits handled: rows are stored as sequences of words (or CPU vectors),
so (conditionally) XOR’ing one row into another typically handles 32 or 64 (or
even more) entries at a time.

It is possible to save more time by merging the vector operations here into matrix
multiplications and using fast matrix-multiplication techniques, although the
current software does not do this. It is also possible to save time by handling
the first n − k columns, checking for systematic form, aborting in the failure
case, and then carrying out the corresponding operations on the remaining k
columns.

Algorithm analysis: permuted systematic form. Converting to per-
muted systematic form means that if there is no pivot in the first column then
there will be a permutation of columns. To find the first pivot row, one must
then search the second column, possibly the third column, etc. Doing this in
constant time means always searching k + 1 columns (assuming the matrix has
full rank), and also doing k conditional swaps of columns, i.e., k(n − k) condi-
tional swaps of entries across columns. Similar comments apply to subsequent
pivots.

Overall there are about k(n − k)2/2 positions searched for pivots, and about
k(n− k)2 swaps of entries across columns, on top of the previous 3n(n− k)2/2
XORs of entries across rows. The operation count is only about twice what it
was before, but the time is much worse, since it is much more difficult to pack
the pivot searches and column swaps into word operations. Storing the matrix
by columns instead of by rows simply shifts the problem to the row operations.

This analysis suggests that a constant-time permuted-systematic-form algo-
rithm (under the full-rank assumption) is much slower than a constant-time
unpermuted-systematic-form algorithm. It might be possible to do better, for
example with a constant-time version of the techniques of “Matrix inversion
made difficult”, but it is certainly not obvious that this would save enough time
to be competitive.

To summarize, the current situation is that constant-time permuted-systematic-
form software seems unlikely to be competitive in key-generation speed.

10



A different possibility. What happens if we try p positions for each pivot
in the constant-time permuted-systematic-form algorithm sketched above, and
restart key generation if the positions are all 0?

Presumably each key-generation attempt has about an (n − k)/2p chance of
failure. The point here is that the input bits seem reasonably random. This
can be checked experimentally for moderate values of p, and p can be chosen
to optimize the average key-generation time; presumably p is then below 30.
Or one could take, say, p = 128 for applications that are willing to use slightly
more time in exchange for more confidence that the first key-generation attempt
will work. “Real-time” applications can safely budget the time for (say) four
key-generation attempts, if the auditor checks experimentally that each attempt
has failure probability below (say) 2−32.

For most of the pivots, the p positions can be, say, the last p positions in the
column checked for the constant-time unpermuted-systematic-form algorithm,
saving time. There is a slowdown only for the last p − 1 pivots, where the
positions will have to stretch across two or more columns.

As explained in Chapter 7, it is important to check that the output is defined
entirely by the code, and not by any extra information in the input matrix.

11



Chapter 7

Permutation security:
Classic McEliece is better

Classic McEliece. Classic McEliece is designed so that any inversion attack
(OW-CPA attack) against Classic McEliece implies an inversion attack against
the original McEliece system with probability about 29% and with almost iden-
tical speed.

To prove this implication, simply convert the McEliece public key and ciphertext
into a public key and ciphertext for Classic McEliece, by reducing the McEliece
public key to (unpermuted) systematic form. This reduction works with prob-
ability about 29%, the same probability that a key-generation attempt works.
When it works, this process produces the same distribution of Classic McEliece
public keys (and corresponding ciphertexts) that are produced by the Classic
McEliece key-generation (and encryption) algorithms.

This is not a two-way implication: it’s conceivable that Classic McEliece is more
secure than original McEliece. However, there are no known attacks separating
these. More importantly, the whole point is to obtain confidence in the security
of Classic McEliece from the long study of original McEliece.

NTS-KEM. NTS-KEM claims to have the same feature: namely, that any
inversion attack against NTS-KEM implies an inversion attack against the orig-
inal McEliece system with high probability and with almost identical speed.

There is, however, a security deficiency at this point in the NTS-KEM spec-
ification: namely, the permutation-update mechanism (see Chapter 6) is not
specified. Consequently, there is no reason to believe that the permutation
update is defined entirely by the code provided as input. To see that this is im-
portant, note that a malicious permutation-update mechanism can easily leak
secrets through entries of the matrix that it produces as output. The security

12



theorem claimed for NTS-KEM does not make any assumptions excluding such
a mechanism, so the theorem cannot be correct as stated.

If the permutation update is defined entirely by the code provided as input,
then any inversion attack against NTS-KEM implies an inversion attack against
the original McEliece system with almost identical speed: simply convert the
McEliece public key and ciphertext into a public key and ciphertext for NTS-
KEM, permuting the ciphertext along with the public key. It is important here
that converting the original secret Goppa matrix directly into the NTS-KEM
public key produces the same result as converting it first into the McEliece
public key and then into the NTS-KEM public key; this is where the “defined
entirely by the code” assumption is used.

The NTS-KEM reference implementation appears to first compute reduced row-
echelon form, and then compute a permutation update as a function of the
reduced row-echelon form. However, the specification (“transform H to reduced
row echelon form, re-ordering its columns if necessary, such that the identity
matrix In−k occupies the last n− k columns of H”) does not require this order
of operations.

13



Chapter 8

Compressed secret keys:
Classic McEliece is better

It is straightforward to generate the secret permutation in Classic McEliece from
a 256-bit seed: use the seed with a stream cipher to generate random numbers,
and sort the random numbers to determine the permutation. Similar comments
apply to the secret polynomial.

As discussed earlier, the permutation and polynomial are acceptable with prob-
ability 29%. Key generation writes down a parity-check matrix and tries to
reduce the matrix to (unpermuted) systematic form. If this fails, key genera-
tion starts over with a new seed (e.g., a hash of the previous seed).

A user has the option of storing only the seed—the final 256-bit seed; this
is smaller and faster than storing the original seed and the number of hashes
required. The user then expands the seed into the permutation and polynomial
whenever desired. Note that this does not require the space and time for the
matrix computations that took place during key generation.

For NTS-KEM, as discussed earlier, a further permutation is applied during key
generation. This permutation is determined by a matrix computation. If the
user stores only the 256-bit seed, then expanding the seed into the permutation
and polynomial seems to require the same matrix computations—much more
time and space than for Classic McEliece. There does not seem to be any way
to avoid these costs without storing additional information about the further
permutation.

One way to represent the further permutation would be as a sequence of swaps.
The number of swaps required for the further permutation is not very large on
average. However, variable-length secret keys raise questions regarding timing
attacks. It is not clear how many extra bits are required for constant-length
compressed keys that work with acceptable probability.

14



Chapter 9

Polynomials: Classic
McEliece is better

Classic McEliece uses monic irreducible Goppa polynomials. NTS-KEM uses
monic squarefree (i.e., separable) Goppa polynomials without linear factors.

Mathematical background: the number of polynomials. Assume t ≥ 2.
Then the set of monic degree-t irreducible polynomials over the finite field Fq

is a subset of the set of monic degree-t squarefree polynomials over Fq without
linear factors.

Define δ as the probability that a monic degree-t squarefree polynomial without
linear factors is irreducible. The point of the following calculations is that
δ ≈ exp(1)/t.

The number of monic degree-t irreducible polynomials is (1/t)
∑

d|t µ(d)qt/d ≈
qt/t, where µ is the Möbius function. For example, for t = 64, this number is
(q64 − q32)/64 ≈ q64/64; i.e., about 2762 for q = 4096.

The number of monic degree-t squarefree polynomials without linear factors is
the coefficient of xt in the power series (1−qx2)/((1−qx)(1+x)q). For example,
for t = 64 and q = 4096, this number is 0.36783451848291 . . . · q64 ≈ 1.5 · 2766.
To understand the factor 0.36783451848291 . . . here, note that there are

• q monic linear polynomials, each of which divides a uniform random monic
degree-t polynomial with probability 1/q since t ≥ 1;

• (q2 − q)/2 monic irreducible degree-2 polynomials, each of which has a
square dividing a uniform random monic degree-t polynomial with prob-
ability 1/q4 if t ≥ 4;

15



• (q3 − q)/3 monic irreducible degree-3 polynomials, each of which has a
square dividing a uniform random monic degree-t polynomial with prob-
ability 1/q6 if t ≥ 6;

• etc.

If these probabilities were independent then the overall chance of non-divisibility
would be (1 − 1/q)q(1 − 1/q4)(q

2−q)/2(1 − 1/q6)(q
3−q)/3 · · · . In particular, for

q = 4096, the first factor (1−1/q)q is 0.36783452944434 . . .; the second factor is
0.99999997020495 . . .; the third factor is 0.99999999999514 . . .; etc. The prob-
abilities are not exactly independent, but they are close to independent when
t is not very small. As q increases, the first factor converges to 1/ exp(1) =
0.36787944117144 . . ., and the remaining factors converge to 1.

The number of keys. Consider a McEliece key generated using a monic
degree-t squarefree polynomial without linear factors. Define δ′ as the proba-
bility that the polynomial is irreducible. Experiments show that the squarefree
and irreducible cases have practically identical probabilities of producing keys
(see Chapter 6), so δ′ ≈ δ ≈ exp(1)/t.

Relative security. In the original McEliece paper, the user “randomly selects
an irreducible polynomial of degree t”; i.e., irreducible polynomials were the
original choice in the McEliece cryptosystem. Preserving this choice trivially
preserves the security level, whereas changing to squarefree polynomials might
change the security level.

The central argument to preserve McEliece’s original choice is that changing to
squarefree polynomials could conceivably produce a large drop in security level.
Perhaps the only secure cases are the irreducible cases, while all other cases are
much more efficiently breakable. There are many other areas of cryptography
where the existence (and/or knowledge) of nontrivial factors helps the attacker;
there has been little study of the impact of factors in the McEliece context.

A counterargument is that, compared to original McEliece, changing to square-
free polynomials could conceivably increase the security level. There are two
reasons that this counterargument is less convincing than the argument.

First, as noted earlier, the whole point is to obtain confidence in security from
the long study of the original McEliece system. Having much less security than
the original system would be a serious flaw in the system design. Having much
more security than the original system would be nice but is not necessary.

Second, changing to squarefree polynomials cannot increase the security level
by more than log2(1/δ′) ≈ log2 t − 1.44 bits, assuming t ≥ 2. If log2 t is small
(which it is for both Classic McEliece and NTS-KEM), the potential gain in
security level brought by switching from irreducible to squarefree is also small.

16



Specifically, consider an inversion algorithm with success probability ε at break-
ing monic degree-t irreducible polynomials. Run the same algorithm against a
monic degree-t squarefree polynomial without linear factors. The polynomial
has probability δ′ of being irreducible, so the algorithm now has success proba-
bility at least δ′ε.

Entropy. An argument for squarefree is that there are more squarefree poly-
nomials, i.e., there is a larger space of possible secrets. However, this expansion
cannot gain more than about log2 t − 1.44 bits of security, while it could lose
much more security; see above.

Algorithms to generate polynomials. One can generate a random irre-
ducible polynomial with probability extremely close to 1 by computing the
minimal polynomial of a random element of the field defined by a standard
irreducible polynomial of that degree. Computing minimal polynomials is a
simple matter of linear algebra.

Recognizing a squarefree polynomial is a simple matter of checking for common
factors between the polynomial and its derivative; checking for linear factors is
also simple.

Further analysis is required of implementation security (e.g., checking for com-
mon factors is typically done by a variable-time gcd computation) and perfor-
mance.

Per-user choices. The choice between squarefree and irreducible is visible
only to the secret-key holder, so it would be possible to let different secret-key
holders make different choices. However, settling on one choice is better for
security of the ecosystem. A similar comment applies in Chapter 6.

17



Chapter 10

Public keys: Classic
McEliece is better

Size comparison:

public-key bits system
k(n− k) Classic McEliece submission
k(n− k) NTS-KEM software
k(n− k) + 32 NTS-KEM definition in NTS-KEM specification

Classic McEliece public keys are marginally shorter and marginally simpler than
public keys defined in the NTS-KEM specification, since NTS-KEM spends 4
extra bytes in public keys to communicate the parameters (t, 256). See the
definition of “public key” on the top of page 12 of the specification, and footnote
7 of the specification (“We assume that the public key values τ and ` are stored
in two-byte strings each”).

However, there appears to be a discrepancy between (1) the definition in the
NTS-KEM specification, (2) the specific key sizes in the NTS-KEM specification,
and (3) the NTS-KEM software. The specific key sizes and software appear to
skip the 4 bytes for τ and `.

18



Chapter 11

Allowing reduced n: Classic
McEliece is better

Classic McEliece allows n below 2m. NTS-KEM describes “a high degree of
flexibility in the setting of parameters” as an advantage, but requires specifically
n = 2m.

The best tradeoffs between key size and security often require n to be below
2m. See Figure 11.1. For example, within the constraint of keeping keys below
a fixed size (specifically a megabyte), Classic McEliece obtains several bits more
security with n below 2m than can be obtained under the restriction n = 2m.
Similarly, the 200-bit security level is too high to be reached with n = 4096; the
restriction n = 2m forces keys to be 5694975 bits, while allowing other values
of n reduces keys below 4800000 bits. The 2008 Bernstein–Lange–Peters paper
already describes this effect and has a numerical example of it.

Classic McEliece also points to n below 2m as creating an additional obstacle
to support splitting. In other words, n < 2m is more paranoid than n = 2m.

NTS-KEM argues that “implementations are cleaner and usually faster” with
the restriction n = 2m. There is a little bit of truth to this, but not much, and
people who want the best tradeoff between security and key size will be willing
to spend the implementation effort.

NTS-KEM argues that taking n = 2m “minimises the length of the ciphertext”
at any particular security level, and claims that “We chose to make shortening
the ciphertext length our top design priority”. However, NTS-KEM param-
eters aren’t actually chosen for minimum ciphertext length (even if one adds
a requirement for parameters to avoid high-rate distinguishers). For example,
NTS-KEM selects (n,w) = (8192, 136) with 1768-bit ciphertexts (and 11357632-
bit keys), but at approximately the same security level it could instead have
selected (n,w) = (16384, 81) with 1134-bit ciphertexts (and 13672764-bit keys),

19



Figure 11.1: Horizontal axis: Key size k(n− k) in bits. Vertical axis: Security
level according to the BLP formulas. Purple curve on the left: n = 4096 with
various choices of error weight. Purple curve on the right: n = 8192 with various
choices of error weight. Each curve limits k to the range [n/2, n].

20



or (n,w) = (24576, 70) with 1050-bit ciphertexts (and 24702300-bit keys).

NTS-KEM argues that “setting parameters is also simpler” with the restriction
n = 2m. However, the main work in setting parameters is choosing a function
that maps parameters to a score, and, unless the function is extremely slow, it
will easily finish for the whole range of Classic McEliece parameters.

21



Chapter 12

Specific parameter sets: can
argue either way

Classic McEliece proposes two level-5 options:

• mceliece6960119: n = 6960 with t = 119.

• mceliece8192128: n = 8192 with t = 128.

For the same level NTS-KEM has n = 8192 with t = 136. NTS-KEM also
proposes n = 8192 with t = 80 for level 3, and n = 4096 with t = 64 for level 1.

An argument for supporting multiple levels is that (maybe) some applications
will care about the performance differences between level 1 and level 5. An
argument against supporting multiple levels is that the whole point here is to
be conservative.

NTS-KEM always takes t as a multiple of 8 and claims that this helps avoid
software bugs.

22



Chapter 13

Miscellaneous sloppiness

NTS-KEM allows t (“τ”), the number of errors, to be 1, in which case key
generation loops forever. Classic McEliece requires t to be at least 2, avoiding
this mistake. This doesn’t really matter since t is always chosen much larger.

NTS-KEM claims incorrectly that list decoding creates decryption failures. For
the moment no submission is recommending list decoding.

23



Chapter 14

Current software

Classic McEliece already has constant-time software. This is a major advantage.

For encapsulation and decapsulation, the Classic McEliece software is gener-
ally faster than the NTS-KEM software. One big slowdown in the NTS-KEM
software is a naive syndrome computation rather than a transposed additive
FFT.

The NTS-KEM software uses M4RI for key generation, saving time, but this
isn’t constant-time. See Chapter 6.

The NTS-KEM software uses variable-time shuffling methods. These won’t beat
constant-time sorting in speed.

24


	Introduction
	Ciphertext size: identical
	Ciphertext details: Classic McEliece is better
	Patent status: identical?
	Chosen-ciphertext attacks: Classic McEliece is better
	Systematic form: Classic McEliece is better
	Permutation security: Classic McEliece is better
	Compressed secret keys: Classic McEliece is better
	Polynomials: Classic McEliece is better
	Public keys: Classic McEliece is better
	Allowing reduced n: Classic McEliece is better
	Specific parameter sets: can argue either way
	Miscellaneous sloppiness
	Current software

